Organic Letters
Letter
Activities of a Carbohydrate Antibiotic, Prumycin, against Drug-
resistant Strains of Plasmodia. J. Antibiot. 2004, 57, 400−402. (f) Ui,
H.; Ishiyama, A.; Sekiguchi, H.; Namatame, M.; Nishihara, A.;
vivo antimalarial activity, which showed promise for develop-
ment of a new antimalarial agent. Further investigation,
including a structure−activity relationship (SAR) study, of
the antimalarial potential of kozupeptins is in progress.
̅
Takahashi, Y.; Shiomi, K.; Otoguro, K.; Omura, S. Selective and
Potent In Vitro Antimalarial Activities Found in Four Microbial
Metabolites. J. Antibiot. 2007, 60, 220−222. (g) Iwatsuki, M.; Takada,
S.; Mori, M.; Ishiyama, A.; Namatame, M.; Nishihara-Tsukashima, A.;
ASSOCIATED CONTENT
* Supporting Information
■
S
̅
Nonaka, K.; Masuma, R.; Otoguro, K.; Shiomi, K.; Omura, S. In vitro
and in vivo antimalarial activity of puberulic acid and its new analogs,
viticolins A−C, produced by Penicillium sp. FKI-4410. J. Antibiot.
2011, 64, 183−188. (h) Hirose, T.; Noguchi, Y.; Furuya, Y.; Ishiyama,
The Supporting Information is available free of charge on the
̅
A.; Iwatsuki, M.; Otoguro, K.; Omura, S.; Sunazuka, T. Structure
Experimental details and characterization data (PDF)
Determination and Total Synthesis of (+)-16-Hydroxy-16,22-
dihydroapparicine. Chem. - Eur. J. 2013, 19, 10741−10750.
(4) (a) Marfey, P. Determination of α-Amino Acids. II. Use of a
Bifunctional Reagent, 1,5-Difuluoro-2,4-dinitromenzene. Carlsberg
Res. Commun. 1984, 49, 591−596. (b) Fujii, K.; Ikai, Y.; Mayumi,
T.; Oka, H.; Suzuki, M.; Harada, K. A Nonempirical Method Using
LC/MS for Determination of the Absolute Configuration of
Constituent Amino Acids in a Peptide: Elucidation of Limitations
of Marfey’s Method and of Its Separation Mechanism. Anal. Chem.
1997, 69, 3346−3352.
AUTHOR INFORMATION
Corresponding Authors
■
ORCID
(5) Miwa, H.; Hiyama, C.; Yamamoto, M. High-Performance Liquid
Chromatography of Short-and Long-Chain Fatty Acids as 2-
Nitrophenylhydrazides. J. Chromatogr. A 1985, 321, 165−174.
(6) Andersson, B. A.; Holman, R. T. Pyrrolidides for mass
spectrometric determination of the position of the double bond in
monounsaturated fatty acids. Lipids 1974, 9, 185−190.
Notes
The authors declare no competing financial interest.
(7) For recent representative reviews of SPPS, see: (a) Amblard, M.;
Fehrentz, J.-A.; Martinez, J.; Subra, G. Methods and Protocols of
Modern Solid Phase Peptide Synthesis. Mol. Biotechnol. 2006, 33,
239−256. (b) Behrendt, R.; White, P.; Offer, J. Advances in Fmoc
solid-phase peptide Synthesis. J. Pept. Sci. 2016, 22, 4−27.
(8) For LPPS-based methods to address several problems of
conventional LPPS, see: (a) Narita, M. Liquid Phase Peptide
Synthesis by the Fragment Condensation on Soluble Polymer
Support. I. Efficient Coupling and Relative Reactivity of a Peptide
Fragment with Various Coupling Reagents. Bull. Chem. Soc. Jpn. 1978,
51, 1477−1480. (b) Pillai, V. N. R.; Mutter, M. New, Easily
Removable Poly(ethylene glycol) Supports for the Liquid-Phase
Method of Peptide Synthesis. J. Org. Chem. 1980, 45, 5364−5370.
(c) Mizuno, M.; Goto, K.; Miura, T.; Hosaka, D.; Inazu, T. A novel
peptide synthesis using fluorous chemistry. Chem. Commun. 2003,
972−973.
ACKNOWLEDGMENTS
■
We thank Dr. K. Nagai and Ms. N. Sato (School of Pharmacy,
Kitasato University) for various instrumental analyses. We
thank Dr. T. Shirahata (School of Pharmacy, Kitasato
University) for GCMS analysis. We thank Mr. T. Tokiwa
(Kitasato Institute for Life Sciences, Kitasato University) for
photographing the fungus. This study was partly supported by
JSPS KAKENHI Grant Number 17K08343. This research was
also partially supported by Platform Project for Supporting
Drug Discovery and Life Science Research (Basis for
Supporting Innovative Drug Discovery and Life Science
Research (BINDS)) from AMED under Grant Numbers
17am0101096j0001 and 18am0101096j0002.
REFERENCES
(9) Tamiaki, H.; Obata, T.; Azefu, Y.; Toma, K. A Novel Protecting
Group for Constructing Combinatorial Peptide Libraries. Bull. Chem.
Soc. Jpn. 2001, 74, 733−738.
■
(1) World Health Organization, World Malaria Report 2017.
(2) For recent representative reviews, see: (a) Sinha, S.; Medhi, B.;
Sehgal, R. Challenges of drug-resistant malaria. Parasite 2014, 21, 61.
(b) Blasco, B.; Leroy, D.; Fidock, D. A. Antimalarial drug resistance:
linking Plasmodium falciparum parasite biology to the clinic. Nat. Med.
2017, 23, 917−928.
(10) For representative reports, see: (a) Tana, G.; Kitada, S.; Fujita,
S.; Okada, Y.; Kim, S.; Chiba, K. A practical solution-phase synthesis
of an antagonistic peptide of TNF-a based on hydrophobic tag
strategy. Chem. Commun. 2010, 46, 8219−8221. (b) Okada, Y.;
Suzuki, H.; Nakae, T.; Fujita, S.; Abe, H.; Nagano, K.; Yamada, T.;
Ebata, N.; Kim, S.; Chiba, K. Tag-Assisted Liquid-Phase Peptide
Synthesis Using Hydrophobic Benzyl Alcohols as Supports. J. Org.
Chem. 2013, 78, 320−327. (c) Fujita, Y.; Fujita, S.; Okada, Y.; Chiba,
K. Soluble Tag-Assisted Peptide Head-to-Tail Cyclization: Total
Synthesis of Mahafacyclin B. Org. Lett. 2013, 15, 1155−1157.
(d) Matsumoto, E.; Fujita, Y.; Okada, Y.; Kauppinen, E. I.; Kamiya,
H.; Chiba, K. Hydrophobic benzyl amines as supports for liquid-phase
C-terminal amidated peptide synthesis: application to the preparation
of ABT-510. J. Pept. Sci. 2015, 21, 691−695.
(3) (a) Otoguro, K.; Kohana, A.; Manabe, C.; Ishiyama, A.; Ui, H.;
̅
Shiomi, K.; Yamada, H.; Omura, S. Potent Antimalarial Activities of
Polyether Antibiotic, X-206. J. Antibiot. 2001, 54, 658−663.
(b) Otoguro, K.; Ishiyama, A.; Ui, H.; Kobayashi, M.; Manabe, C.;
̅
Yan, G.; Takahashi, Y.; Tanaka, H.; Yamada, H.; Omura, S. In Vitro
and In Vivo Antimalarial Activities of the Monoglycoside Polyether
Antibiotic, K-41 against Drug Resistant Strains of Plasmodia. J.
Antibiot. 2002, 55, 832−834. (c) Otoguro, K.; Ui, H.; Ishiyama, A.;
Arai, N.; Kobayashi, M.; Takahashi, Y.; Masuma, R.; Shiomi, K.;
̅
Yamada, H.; Omura, S. In Vitro Antimalarial Activities of the
(11) Hirose, T.; Kasai, T.; Akimoto, T.; Endo, A.; Sugawara, A.;
Nagasawa, K.; Shiomi, K.; Omura, S.; Sunazuka, T. Solution-phase
̅
Microbial Metabolites. J. Antibiot. 2003, 56, 322−324. (d) Otoguro,
K.; Ui, H.; Ishiyama, A.; Kobayashi, M.; Togashi, H.; Takahashi, Y.;
total synthesis of the hydrophilic natural product argifin using 3,4,5-
tris(octadecyloxy)benzyl tag. Tetrahedron 2011, 67, 6633−6643.
(12) (a) Takahashi, D.; Yamamoto, T. Development of an efficient
liquid-phase peptide synthesis protocol using a novel fluorene-derived
anchor support compound with Fmoc chemistry; AJIPHASE.
Tetrahedron Lett. 2012, 53, 1936−1939. (b) Takahashi, D.; Yano,
̅
Masuma, R.; Tanaka, H.; Tomoda, H.; Yamada, H.; Omura, S. In
Vitro and in Vivo Antimalarial Activities of a Non-glycosidic 18-
Membered Macrolide Antibiotic, Borrelidin, against Drug-resistant
Strains of Plasmodia. J. Antibiot. 2003, 56, 727−729. (e) Otoguro, K.;
Ishiyama, A.; Kobayashi, M.; Sekiguchi, H.; Izuhara, T.; Sunazuka, T.;
̅
Tomoda, H.; Yamada, H.; Omura, S. In Vitro and In Vivo Antimalarial
D
Org. Lett. XXXX, XXX, XXX−XXX