4642
L. Duque et al. / Tetrahedron Letters 51 (2010) 4640–4643
OH
O
O
O
OMe
OMe
OMe
a, b
c
72%
65%
6
5
4
OR
OMe
O
O
d
f
OH
O
90%
50%
2:
1
R = CH3
R = H
e, 95%
3:
Scheme 3. Reagents and conditions: (a) PhMgBr (1 M in THF), ꢀ70 °C to 25 °C in 30 min, then NH4Cl(aq); (b) DDQ, CH2Cl2, reflux 10 min; (c) (salen)Mn, CH2Cl2, 4-
phenylpyridine-N-oxide, 30% Ca(OCl)2, 0 °C, 4 h, then silica gel; (d) 45% HBr, AcOH, reflux 6 h; (e) 1 equiv CH2N2; (f) MeOH, irradiation (ENX lamp, 82 V, 360 W, 2500 lumens),
8 h.
(C3D6O, 500.13 MHz) d 8.04 (d, J = 8.8 Hz, H-80), 7.84 (d, J = 8.1 Hz, H-50), 7.82
Acknowledgments
(d, J = 8.8 Hz, H-40), 7.51 (dd, J = 8.8, 7.6 Hz, H-70), 7.42 (d, J = 8.8 Hz, H-30), 7.34
(dd, J = 8.1, 7.6 Hz, H-60), 3.98 (s, –OCH3), 3.39 (t, J = 8.3 Hz, H-3), 2.55 (t,
13
´
We thank Sybille Lorenz for mass spectrometric analyzes and
Emily Wheeler for editorial assistance. This research was finan-
cially supported by the Universidad de Antioquia (Grant CODI
IN580CE) and the Max-Planck-Institut für Chemische Ökologie.
J = 8.3 Hz, H-2); C NMR (C3D6O, 125.75 MHz) d 174.2 (C-1 155.5 (C-2), 133.6
(C-8a0), 130.2 (C-4a´), 129.4 (C-50), 129.0 (C-40), 127.3 (C-70), 124.0 (C-60), 123.6
(C-80), 122.3 (C-10), 114.2 (C-30), 56.8 (–OCH3), 34.4 (C-2), 21.3 (C-3). HREIMS
m/z 256.094212 (calcd for C14H14O3, 256.094294).
10. Experimental procedure: To a ꢀ70 °C THF solution of 6 (1.41 g, 6.7 mmol in
10 mL) was slowly added (5 min) 1.3 equiv of phenylmagnesium bromide
(9 mL, 1.0 M in THF) under nitrogen. The reaction mixture was stirred for
10 min at ꢀ70 °C before being warmed up to 25 °C (total stirring time 30 min).
The reaction was quenched with a saturated aqueous solution of NH4Cl and
extracted with CH2Cl2 (20 mL). The organic phase was dried (Na2SO4), filtered,
mixed with 1.5 g of DDQ (6.5 mmol), and boiled for 15 min. The product was
purified by flash column chromatography using CH2Cl2 as an eluent to afford 4-
methoxy-9-phenyl-1H-phenalen-1-one (5, 1.38 g, 72%) as a yellow solid. 1H
NMR, (C3D6O, 500.13 MHz) d 8.27 (d, J = 8.2 Hz, H-7), 8.26 (d, J = 9.1 Hz, H-6),
8.21 (d, J = 10.0 Hz, H-3), 7.62 (d, J = 9.1 Hz, H-5), 7.43 (d, J = 8.2 Hz, H-8), 7.38
(m, H-20/60), 7.33 (m, H-40), 7.32 (m, H-30/50), 6.45 (d, J = 10.0 Hz, H-2), 4.18 (s, –
OCH3); 13C NMR, (C3D6O, 125.75 MHz) d 185.0 (C-1), 160.0 (C-4), 149.0 (C-9),
144.6 (C-10), 135.5 (C-6), 134.6 (C-7), 134.0 (C-3), 130.5 (C-9b), 130.3 (C-8),
129.2 (C-2), 129.0 (C-30/50), 128.7 (C-20/60), 128.3 (C-6a), 127.5 (C-40), 126.5 (C-
9a), 114.7 (C-3a), 114.5 (C-5), 57.1 (–OCH3). HREIMS m/z 286.099380 (calcd for
References and notes
1. (a) Weiss, U.; Edwards, J. M. Tetrahedron Lett. 1969, 10, 4325–4328; (b)
Edwards, J. M.; Weiss, U. Phytochemistry 1974, 13, 1597–1602; (c) Cooke, R. G.;
Dagley, I. J. Aust. J. Chem. 1979, 32, 1841–1847; (d) Opitz, S.; Otálvaro, F.;
Echeverri, F.; Quiñones, W.; Schneider, B. Nat. Prod. Lett. 2002, 16, 335–338.
2. (a) Kornfeld, J. M.; Edwards, J. M. Biochim. Biophys. Acta 1972, 286, 88–90; (b)
Flors, C.; Nonell, S. Acc. Chem. Res. 2006, 39, 293–300; (c) Hidalgo, W.; Duque,
L.; Saez, J.; Arango, R.; Gil, J.; Rojano, B.; Schneider, B.; Otálvaro, F. J. Agric. Food
Chem. 2009, 57, 7417–7421.
3. Nanclares, J.; Gil, J.; Rojano, B.; Saez, J.; Schneider, B.; Otálvaro, F. Tetrahedron
Lett. 2008, 49, 3844–3847.
4. (a) Kametani, T.; Fukumoto, K. Acc. Chem. Res. 1976, 9, 319–325; For a different
synthesis of naphthoxanthenones, see: (b) Cooke, R. G.; Merrett, B. K.;
C
20H14O2, 286.100510).
´
OLoughlin, G. J.; Pietersz, G. A. Aust. J. Chem. 1980, 33, 2317–2324.
11. Experimental procedures were performed as described in the following papers.
No attempts were made for optimization: (a) Forte, G. J.; Zito, J. A.; Edwards, J.
M. Lloydia 1976, 39, 192–196; (b) Yang, N. C.; Finnegan, R. A. J. Am. Chem. Soc.
1958, 80, 5845–5848; (c) Rani, S.; Vankar, Y. D. Tetrahedron Lett. 2003, 44, 907–
909; (d) Reddy, V. K.; Haritha, B.; Yamashita, M. Lett. Org. Chem. 2005, 2, 128–
131.
5. Numbering of musafluorone (1) was taken over from Opitz et al.1d
6. (a) Hardman, A. F. J. Am. Chem. Soc. 1948, 70, 2119–2120; (b) Koelsch, C. F.;
Hood, H. E. J. Org. Chem. 1955, 20, 1282–1287.
7. In our case, recrystallization of the crude product 9 from ethanol as reported by
Hardman6a did not afford satisfactory results. Therefore, flash column
chromatography was conducted using CH2Cl2 as an eluent. 1H NMR (C3D6O,
500.13 MHz) d 8.80 (s, –OH), 8.03 (d, J = 8.5 Hz, H-80), 7.81 (d, J = 8.1 Hz, H-50),
7.72 (d, J = 8.9 Hz, H-40), 7.50 (ddd, J = 8.5, 6.9, 1.2 Hz, H-70), 7.31 (ddd, J = 8.1,
6.9, 1.2 Hz, H-60), 7.24 (d, J = 8.9 Hz, H-30), 3.45 (t, J = 7.7 Hz, H-3), 2.76 (t,
12. Otálvaro, F.; Quiñones, W.; Echeverri, F.; Schneider, B. J. Labeled Compd.
Radiopharm. 2004, 47, 147–159.
13. Experimental procedure: Compound 5 (325 mg, 1.1 mmol), (S,S)-(+)-N,N0-bis-
(3,5-di-tert-butylsalicylidene)-1,2-diamino-cyclohexane
manganese-(III)-
13
J = 7.7 Hz, H-2); C NMR (C3D6O, 125.75 MHz) d 153.6 (C-20), 134.1 (C-8a0),
chloride ((salen)Mn, 30 mg, 0.05 mmol), and 4-phenylpyridine-N-oxide
(47 mg, 0.3 mmol) were dissolved in CH2Cl2 (10 mL) and the resulting
solution was cooled in an ice-water bath. A 30% slurry of Ca(OCl)2 in water
(10 mL) buffered with 5 mL of a sodium phosphate solution (0.05 M) was
added in one portion under vigorous stirring and the reaction was maintained
at 0 °C for 2 h. The mixture was separated and the organic layer dried and
applied directly to a preparative TLC plate. Separation using CH2Cl2 as an
eluent resulted in a red zone (Rf = 0.74), which gave 165 mg (50%) of 2-
hydroxy-4-methoxy-9-phenyl-1H-phenalen-1-one (4). 1H NMR (C3D6O,
130.0 (C-4a0), 129.6 (C-40), 129.5 (C-50), 127.5 (C-70), 123.6 (C-60), 123.2 (C-80),
120.4 (C-1), 118.6 (C-30), 117.4 (C-10), 21.9 (C-3), 17.2 (C-2). HREIMS m/z
197.084343 (calcd for C13H11NO, 197.084064).
8. Experimental procedure: Compound 9 (5.0 g, 25 mmol), K2CO3 (5.2 g), and CH3I
(2.12 mL, 37.5 mmol) were refluxed in acetone (30 mL) for 4 h. The reaction
mixture was filtered, the solvent removed under vacuum, and the crude extract
submitted to flash column chromatography using a CH2Cl2–n-hexane mixture
(2:1) as eluent to give 4.2 g (80%) of 3-(2-methoxynaphthalen-1-
yl)propanenitrile (8) as a yellow oil. 1H NMR, (C3D6O, 500.13 MHz) d 8.06 (d,
J = 8.6 Hz, H-80), 7.88 (d, J = 9.0 Hz, H-40), 7.86 (d, J = 8.1 Hz, H-50), 7.52 (ddd,
J = 8.6, 6.8, 1.3 Hz, H-70), 7.45 (d, J = 9.0 Hz, H-30), 7.36 (ddd, J = 8.1, 6.8, 1.1 Hz,
H-60), 4.01 (s, –OCH3), 3.45 (t, J = 7.7 Hz, H-3), 2.73 (t, J = 7.7 Hz, H-2); 13C NM0R,
500.13 MHz)
d 8.33 (d, J = 8.2 Hz, H-7), 8.15 (d, J = 9.0 Hz, H-6), 7.61 (d,
J = 9.0 Hz, H-5), 7.51 (s, H-3), 7.46 (d, J = 8.2 Hz, H-8), 7.34–7.45 (br m, H-20–H-
60), 4.17 (s, –OCH3); 13C NMR (C3D6O, 125.75 MHz) d 179.7 (C-1), 159.1 (C-4),
150.7 (C-2), 150.2 (C-9), 144.1 (C-10), 136.1 (C-7), 133.1 (C-6), 129.9 (C-8),
129.0 (C-30/50), 128.7 (C-20/60), 128.2 (C-6a), 127.7 (C-40), 126.8 (C-9b), 124.2
(C-9a), 115.2 (C-3a), 114.7 (C-5), 106.9 (C-3), 57.1 (–OCH3). HREIMS m/z
302.093636 (calcd for C20H14O3, 302.094294).
0
0
´
(C3D6O, 125.75 MHz) d 155.9 (C-2), 133.5 (C-8a ), 130.2 (C-4a ), 129.9 (C-4 ),
129.5 (C-50), 127.6 (C-70), 124.2 (C-60), 123.4 (C-80), 120.3 (C-1), 120.2 (C-10),
114.1 (C-30), 56.8 (–OCH3), 21.6 (C-3), 17.4 (C-2). HREIMS m/z 211.098701
(calcd for C14H13NO, 211.099714).
14. (a) Hölscher, D.; Schneider, B. Phytochemistry 1999, 50, 155–161; (b) Hölscher,
D.; Reichert, M.; Görls, H.; Ohlenschläger, O.; Bringmann, G.; Schneider, B. J.
Nat. Prod. 2006, 69, 1614–1617. Experimental procedure: To a refluxing solution
9. Experimental procedure: Compound 8 (5.55 g, 26 mmol) was refluxed with
NaOH (20%, 50 mL) for 8 h until evolution of ammonia ceased. The dropwise
addition of
a 10% HCl solution afforded 3-(2-methoxynaphthalen-1-
of compound 4 (180 mg, 0.6 mmol) in AcOH (18 mL) was added 300
lL of
yl)propanoic acid (7, 6.0 g, 67%) as a white solid after filtration. 1H NMR,
aqueous HBr (48%). This addition was repeated over intervals of 15 min until a