E. Abraham et al. / Tetrahedron: Asymmetry 21 (2010) 1797–1815
1815
213–215 °C; ½a 2D3
¼ þ29:1 (c 0.3 in MeOH); mmax (KBr) 3313 (N–H,
ꢃ
8. Appella, D. H.; Christianson, L. A.; Klein, D. A.; Powell, D. R.; Huang, X.; Barchi, J.
J., Jr.; Gellman, S. H. Nature 1997, 387, 381; Applequist, J.; Bode, K. A.; Appella,
D. H.; Christianson, L. A.; Gellman, S. H. J. Am. Chem. Soc. 1998, 120, 4891.
O–H), 1706, 1649, 1560 (C@O); dH (400 MHz, CDCl3) 1.23–2.31
(18H, m, 3 ꢂ C(3)H2, 3 ꢂ C(4)H2, 3 ꢂ C(5)H2), 2.34–2.51 (2H, m,
2 ꢂ C(1)H), 2.89–2.99 (1H, m, C(1)H), 3.94–4.14 (2H, m,
2 ꢂ C(2)H), 4.15–4.27 (1H, m, C(2)H), 5.00 (1H, d, J 7.2, NH), 5.08
(1H, d, J 12.3, CHAHBPh), 5.13 (1H, d, J 12.3, CHAHBPh), 6.89 (1H,
d, J 7.9, NH), 7.31–7.45 (5H, m, Ph), 8.58 (1H, br s, NH); dC
(125 MHz, CDCl3) 23.9, 24.2, 25.4, 28.0, 28.0, 28.2, 33.0, 33.2,
33.7 (3 ꢂ C(3), 3 ꢂ C(4), 3 ꢂ C(5)), 53.0, 53.2, 53.5 (3 ꢂ C(1)), 55.4,
55.7, 57.2 (3 ꢂ C(2)), 67.2 (CH2Ph), 128.0, 128.4, 128.6 (o,m,p-Ph),
136.0 (i-Ph), 156.6 (NCO [carbamate]), 174.5, 175.3, 177.0 (2 ꢂ NCO
[amide], CO2H); m/z (ESI+) 545 ([M+NH4+MeCN]+, 15%), 508
9. The ability to adopt alternative conformations is
a consequence of the
relationship between alkyl ring size and torsional angle h. Transhexacin
favours a torsional angle h of around 60°, which specifically stabilises the 14-
helix, whereas the smaller ring size of transpentacin biases h towards larger
values, rendering the 12-helix the most favourable conformer, see: Banerjee,
A.; Balaram, P. Curr. Sci. 1997, 73, 1067.
10. For instance, see: Wang, X.; Espinosa, J. F.; Gellman, S. H. J. Am. Chem. Soc. 2000,
122, 4821; Lee, H.-S.; Syud, F. A.; Wang, X.; Gellman, S. H. J. Am. Chem. Soc.
2001, 123, 7721; Winkler, J. D.; Piatnitski, E. L.; Mehlmann, J.; Kasparec, J.;
Axelsen, P. H. Angew. Chem., Int. Ed. 2001, 40, 743; Woll, M. G.; Fisk, J. D.; LePlae,
P. R.; Gellman, S. H. J. Am. Chem. Soc. 2002, 124, 12447; Raguse, L.; Lai, J. R.;
Gellman, S. H. J. Am. Chem. Soc. 2003, 125, 5592; Park, J.-S.; Lee, H.-S.; Lai, J. R.;
Kim, B. M.; Gellman, S. H. J. Am. Chem. Soc. 2003, 125, 8539; Peelen, T. J.; Chi, Y.;
English, E. P.; Gellman, S. H. Org. Lett. 2004, 6, 4411; Simpson, G. L.; Gordon, A.
H.; Lindsay, D. M.; Promsawan, N.; Crump, M. P.; Mulholland, K.; Hayter, B. R.;
Gallagher, T. J. Am. Chem. Soc. 2006, 128, 10638; Martinek, T. A.; Mándity, I. M.;
Fülöp, L.; Tóth, G. K.; Vaas, E.; Hollósi, M.; Forró, E.; Fülöp, F. J. Am. Chem. Soc.
2006, 128, 13539.
([M+Na]+, 100%), 486 ([M+H]+, 60%); HRMS (ESI+) C26H35N3NaO6
þ
([M+Na]+) requires 508.2418; found 508.2417.
4.23.1. X-ray crystal structure determination for 30
11. Throughout this manuscript, the cyclopentane rings are represented as
puckered on C(2) for clarity; however, a conformational preference is not
implied.
12. (a) Davies, S. G.; Ichihara, O.; Walters, I. A. S. Synlett 1993, 461; (b) Davies, S. G.;
Ichihara, O.; Lenoir, I.; Walters, I. A. S. J. Chem. Soc., Perkin Trans. 1 1994, 1411;
Data were collected using an Enraf-Nonius
j-CCD diffractome-
ter with graphite monochromated Mo K radiation using standard
a
procedures at 190 K. The structure was solved by direct methods
(SIR92); all non-hydrogen atoms were refined with anisotropic
thermal parameters. Hydrogen atoms were added at idealised
positions. The structure was refined using CRYSTALS.26
a
,b-Unsaturated ester 10 was synthesised by an analogous procedure to that
outlined by Davies, S. G.; Garner, A. C.; Long, M. J. C.; Smith, A. D.; Sweet, M. J.;
Withey, J. M. Org. Biomol. Chem. 2004, 2, 3355.
13. Recrystallisation of an aliquot gave a sample of 11 in >99:1 dr that was
subjected to single crystal X-ray analysis, thus unambiguously confirming the
X-ray crystal structure data for 30 [C26H35N3O6]: M = 485.58,
tetragonal, space group P41, a = 10.15760(10) Å, c = 24.3046(5) Å,
relative cis-configuration, with the absolute (1R,2S,aS)-configuration being
V = 2507.67(6) Å3, Z = 4,
l
= 0.092 mmꢁ1, colourless plate, crystal
assigned from the known (S)-configuration of the
a-methylbenzyl
dimensions = 0.2 ꢂ 0.2 ꢂ 0.3 mm3. A total of 2908 unique reflec-
tions were measured for 5 < h < 27 and 2360 reflections were used
in the refinement. The final parameters were wR2 = 0.056 and
stereocentre.
14. The presence of water resulted in partial hydrolysis of the tert-butyl ester,
thought to arise through the in situ production of potassium hydroxide. This
phenomenon was also observed by McErlean, C. S. P.; Moody, C. J. J. Org. Chem.
2007, 72, 10298.
15. Single crystal X-ray analysis of 12 unambiguously confirmed the trans-relative
configuration, with the absolute (S,S,S)-configuration being assigned from the
R1 = 0.046 [I >2.5r(I)].
Crystallographic data (excluding structure factors) have been
deposited with the Cambridge Crystallographic Data Centre as sup-
plementary publication number CCDC 772475. Copies of the data
can be obtained, free of charge, on application to CCDC, 12 Union
Road, Cambridge CB2 1EZ, UK [fax: +44(0) 1223 336033 or e-mail:
deposit@ccdc.cam.ac.uk].
known (S)-configuration of the a-methylbenzyl stereocentre.
16. Single crystal X-ray analysis of 15 unambiguously confirmed the relative trans-
configuration, indicating that the stereochemical integrity of the molecule was
not compromised using this protecting group strategy. The absolute (S,S)-
configurations within 13, 14 and 15 could therefore also be confidently
assigned from the known absolute configurations of 11 and 12.
17. A sample of trimer acid 30 was prepared via treatment of trimer 19 with TFA in
CH2Cl2.
18. Structures were overlaid using the Chem-3D structure mapping function.
19. This procedure took advantage of the fact that the C-terminus C(1)H proton
forms just one short-range NOE correlation to one NH proton, when all
remaining C(1)H protons form short-range NOE correlations to two NH
protons. Similarly the N-terminus NH proton forms just one short-range NOE
correlation to one C(1)H proton when all remaining NH protons form short-
range NOE correlations to two C(1)H protons; see Ref. 7b.
20. NMR structure calculations for all the transpentacin oligomers was performed
using the XPLOR software package (Brünger, A.T. XPLOR Version 3.1: A system for
X-ray crystallography and NMR, Yale University Press, New Haven CT, 1992)
with the parameter and topology files modified so they are appropriate for b-
amino acids. For each peptide the NOE intensities were categorised as either
very strong, strong, medium, weak or very weak. The corresponding distance
restraints used in the structure calculations for the five categories were 1.8–
2.5 Å (very strong), 1.8–3.0 Å (strong), 1.8–3.5 Å (medium), 1.8–4.0 Å (weak)
and 1.8–5.0 Å (very weak). Pseudoatoms were used in the structure
calculations where no stereospecific assignments have been made. Where
hydrogen bond restraints were used in the structure refinement, the distance
restraints used were NH(i)-O(j), 1.3–2.3 Å and N(i)-O(j), 2.3–3.3 Å. A simulated
annealing protocol was used with ensembles of 20 structures being calculated
and the lowest energy 10 structures used for analysis.
References
1. (a) Seebach, D.; Overhand, M.; Kuhnle, F. N. M.; Martinoni, B.; Oberer, L.;
Hommel, U.; Widmer, H. Helv. Chim. Acta 1996, 79, 913; (b) Hintermann, T.;
Seebach, D. Chimia 1997, 50, 244; (c) Seebach, D.; Abele, S.; Schreiber, J. V.;
Martinoni, B.; Nussbaum, A. K.; Schild, H.; Schulz, H.; Hennecke, H.; Woessner,
R.; Bitsch, F. Chimia 1998, 52, 734; (d) Seebach, D.; Hook, D. F.; Glätti, A.
Biopolymers (Peptide Science) 2006, 84, 23.; (e) Aguilar, M.-I.; Purcell, A. W.;
Devi, R.; Lew, R.; Rossjohn, J.; Smith, I.; Perlmutter, P. Org. Biomol. Chem. 2007,
5, 2884.
2. Werder, M.; Hauser, H.; Abele, S.; Seebach, D. Helv. Chim. Acta 1999, 82, 1774.
3. Hamuro, Y.; Schneider, J. P.; DeGrado, W. F. J. Am. Chem. Soc. 1999, 121, 12200;
Liu, D.; DeGrado, W. F. J. Am. Chem. Soc. 2001, 123, 7553.
4. For instance, see: Hintermann, T.; Seebach, D. Synlett 1997, 437; Seebach, D.;
Abele, S.; Gademann, K.; Guichard, G.; Hintermann, T.; Jaun, B.; Matthews, J.
L.; Schreiber, J. V. Helv. Chim. Acta 1998, 81, 932; Gung, B. W.; Zou, D. J. Org.
Chem. 1999, 64, 2176; Raguse, L.; Lai, J. R.; Gellman, S. H. Helv. Chim. Acta
2002, 85, 4154; Glättli, A.; Seebach, D.; van Gunsteren, W. F. Helv. Chim. Acta
2004, 87, 24872; Luppi, G.; Galeazzi, R.; Garavelli, M.; Formaggio, F.;
Tomasini, C. Org. Biomol. Chem. 2004, 2, 2187; Izquierdo, S.; Kogan, M. J.;
Parella, T.; Moglioni, A. G.; Branchadell, V.; Giralt, E.; Ortuño, R. M. J. Org.
Chem. 2004, 69, 5093.
21. Nilges, M.; Gronenborn, A. M.; Brunger, A. T.; Clore, G. M. Protein Eng. 1988, 2,
27.
22. Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J.
Organometallics 1996, 15, 1518.
23. Gung, B. W.; Zou, D.; Stalcup, A. M.; Cottrell, C. E. J. Org. Chem. 1999, 64, 2176.
24. Babler, J. H.; Sarusi, S. J. J. Org. Chem. 1987, 52, 3462.
25. Henderson, D.; Richardson, K. A.; Taylor, R. J. K.; Saunders, J. Synthesis 1983, 12,
996.
5. The n-helix nomenclature is used to define the C@Oꢀ ꢀ ꢀH–N hydrogen bonded
ring sizes observed within the peptide backbone.
6. In contrast, it is often noted that a-peptides usually require at least 15 residues
to elicit any noticeable conformational preferences; see: Quinkirt, G.; Egert, E.;
Griesinger, C. In Peptides: Synthesis, Structure, and Applications; Gutte, B., Ed.;
Academic Press: San Diego, 1995.
7. (a) Appella, D. H.; Christianson, L. A.; Karle, I. L.; Powell, D. R.; Gellman, S. H. J.
Am. Chem. Soc. 1996, 118, 13071; (b) Barchi, J. J., Jr.; Huang, X.; Appella, D. H.;
Christianson, L. A.; Durell, S. R.; Gellman, S. H. J. Am. Chem. Soc. 2000, 122,
2711.
26. Betteridge, P. W.; Carruthers, J. R.; Cooper, R. I.; Prout, C. K.; Watkin, D. J.
CRYSTALS, 2001, Issue 11, Chemical Crystallography Laboratory, University of
Oxford: UK.