S. D. Roughley, T. Hart / Tetrahedron Letters 51 (2010) 5191–5194
5193
Table 2
Table 3
Acid- and Lewis acid-catalysed conditionsa
Scope of the ether formationa
N
Cl
Ar
N
Cl
Cl
ROH
Ar
N
Cl
Cl
Ar
N
PTSA•H2O
15
O
O
OH
O
120 ºC
R
4
Cl
N
N
18
13
Bn
Ar = 4-chlorophenyl
Cl
Solvent
Catalyst
(equiv)
Tb
(°C)
Commentc
ROH
Time (h)
3
Yield (%)
90
15
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
CH2Cl2
FeCl3 (0.1)
FeCl3 (0.1)
20
120
NR
NR
NR
NR
NR
NR
HO
5.75
5
100% LC–MS conversion
72 (Boc group lost)b
78 (Boc group lost)b
68b
Sc(OTf)3 (0.1) 20
Sc(OTf)3 (0.1) 120
NH
PTSA (0.1)
PTSA (1.1)
PTSA (3.0)
PTSA (3.0)
120
120
120
140
HO
HO
N
Boc
10% conversion into 13
40% conversion into 13;
by-products forming
NR
10% conversion into 13
20% conversion into 13
5
N
Boc
CH2Cl2
CH2Cl2
PhMe
PhMe
PTSA (3.0)d
PTSA (3.0)d
PTSA (3.0)
PTSA (3.0)
120
140
120
200
120
200
5.75
5.75
NH•HCl
NH•HCl
HO
All 4 consumed, many by-products
79b
1,4-dioxane PTSA (3.0)
1,4-dioxane PTSA (3.0)
Trace 13 formed
HO
HO
40% conversion into 13;
by-products forming
5
5
73b
72b
NH
NH
Ph
N
MeCN
MeCN
H2O
PTSA (3.0)
PTSA (3.0)
PTSA (3.0)
PTSA (3.0)
PPTS (3.0)
PPTS (3.0)
AcOH (3.0)
AcOH (3.0)
—
120
200
120
200
120
200
120
200
120
200
120
140
Trace 13 formed
Decomposition
HO
HO
HO
NR
H2O
Decomposition
PhMe
PhMe
PhMe
PhMe
AcOH
AcOH
CH2Cl2
CH2Cl2
NR
1.75
3.25
Decomp., trace product
81
60% conversion into 18, no 13 formed
Ph
NR
NR
NR
NH
•HCl
a
All reactions performed with 1:1 4: ROH with 3 equiv of PTSA at 125 °C in an
open tube.
—
4-Ac and des-Cl-4
NR
TFA (3.0)
TFA
b
Product isolated as 1:1 mixture of diastereomers.
10% conversion into the
trifluoroacetate of 4
60% conversion into 13
e
—
—
PTSA (3.0)
PTSA (3.0)
—
125
125f 90% isolated yield of 13
e
H2SO4
rt
Decomposition
Acknowledgement
a
All reactions carried out with a 1:1 mixture of 4 and 15 for 20 min unless
otherwise indicated.
The authors thank Heather Simmonite for NMR spectroscopy
(compound 13).
b
Reactions heated to indicated temperature using
a Biotage Synthesizer
microwave.
c
Reactions monitored by LC–MS—NR = no reaction, % conversion based on LC–
References and notes
MS.
d
4 Å molecular sieves added.
Reaction performed as a melt in an open tube.
Reaction run for 3 h.
e
f
1. Hart, T.; Macias, A. T.; Benwell, K.; Brooks, T.; D’Alessandro, J.; Dokurno, P.;
Francis, G.; Gibbons, B.; Haymes, T.; Kennett, G.; Lightowler, S.; Mansell, H.;
Matassova, N.; Misra, A.; Padfield, A.; Parsons, R.; Pratt, R.; Robertson, A.; Walls,
S.; Wong, M.; Roughley, S. Bioorg. Med. Chem. Lett. 2009, 19, 4241.
2. Davidson, J. E. P.; Bentley, J. M.; Dawson, C. E.; Harrison, K.; Mansell, H. L.;
Pither, A. L.; Pratt, R. M.; Roffey, J. R. A.; Ruston, V. J.; WO2004/096794, 2004;
Chem. Abstr. 2004, 141, 410806.
3. (a) Rynbrandt, R. H.; Tiffany, B. D.; Balgoyen, D. P.; Nishizawa, E. E.; Mendoza, A.
R. J. Med. Chem. 1979, 22, 525; (b) Dunn, A. D.; Norrie, R. Z. Chem. 1990, 30, 245.
4. All reagents were purchased from the Sigma–Aldrich Chemical Company
except for (R)- and (S)-1-Boc-3-hydroxymethylpiperidine (CNH Technologies
Inc., Woburn, MA), 3-hydroxyazetidine hydrochloride (Atlantic SciTech Group
Inc., Linden, NJ) and 1-benzhydrylazetidin-3-ol (Fluorochem Ltd, Old Glossop,
Derbyshire, UK). All commercial reagents were used as supplied without
further purification.
lowed an improved synthesis of VER-156084 (7).13 Completion of
the synthesis required urea formation and resolution as described
in our earlier report,1 giving the racemic material in three steps,
with an overall yield of 35%. Scale-up of the ether formation was
best achieved by carrying out the reaction as a thin layer melt in
a Petri dish immersed in a sandbath, under which conditions, the
reaction could be run on at least 7.8 mmol scale.
In conclusion, we have described the development of a novel
ether synthesis, using molten PTSA as the catalyst. We believe this
methodology to be generally applicable to the synthesis of hin-
dered ethers resistant to conventional conditions and have demon-
strated its applicability to a range of hindered nucleophilic alcohols
bearing protected and free amine functionalities. Furthermore, the
solvent-free, environmentally benign non-toxic nature of the re-
agents has significant benefits over alternative methodologies.
We have demonstrated the utility of the methodology in an im-
proved synthesis of the FAAH inhibitor VER-156084 and will dis-
cuss its wider application in the investigation of FAAH inhibitors
elsewhere.
5. (a) Belmont, P.; Andrez, J.-C.; Allan, C. S. M. Tetrahedron Lett. 2004, 45, 2783; (b)
Bhat, B.; Bhaduri, A. P. Synthesis 1984, 673.
6. See: e.g. Greene, T. W.; Wuts, P. G. M. Protective Groups in Organic Synthesis, 3rd
ed.; Wiley-Interscience: New York, 1999.
7. For a direct etherification, see: e.g. (a) De Martino, G.; La Regina, G.; Di Pasquali,
A.; Ragno, R.; Bergamini, A.; Ciaprini, C.; Sinistro, A.; Maga, G.; Crespan, E.;
Artico, M.; Silvestri, R. J. Med. Chem. 2005, 48, 4378; (b) Many alternative
examples are prepared by indirect substrate-specific methods, see: e.g. Boyd,
M.; Gagnon, M.; Lau, C.; Mellon, C.; Scheigetz, J. WO2004/022526, 2003; Chem.
Abstr. 2003, 140, 270877.
8. Zhang, M.-Q.; Wada, Y.; Sato, F.; Timmerman, H. J. Med. Chem. 1995, 38, 2472.
9. (a) Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651; (b) Huang, S. L.; Omura, K.;
Swern, D. Synthesis 1978, 297; (c) Mancuso, A. J.; Huang, S.-L.; Swern, D. J. Org.
Chem. 1978, 43, 2480.