C O M M U N I C A T I O N S
desired product was obtained when chlorobenzene 2a′′ was used
(entry 4). The ligand also plays an important role in the reaction
(entries 5-7). Use of Xphos as the ligand was essential for the
three-component coupling. CuI is also essential for the reaction
(entry 8). We noted that the reaction was significantly affected by
solvent, with toluene giving the best results for the three-component
coupling (entries 9-10). Finally, it was found that the reaction could
not be improved by adjusting the ratio of the substrates (entries
12-14).
intermediate D is generated by transmetalation of C with copper
acetylide, followed by reductive elimination to afford product 4
and to regenerate the palladium catalyst.
Scheme 2. Plausible Mechanism
With the optimized reaction conditions, we then studied the scope
of this reaction by using various N-tosylhydrazones, aryl bromides,
and terminal alkynes. As illustrated in Table 2, the three-component
cross coupling proceeds smoothly over a wide range of substrates with
moderate to good yields. For the aromatic bromide component, the
ortho substituent has a negative effect on the cross coupling (entries
5, 6). As for the terminal alkyne component, the reaction tolerates a
wide range of substituents and functional groups, except in the case
when there is an ester substituent, in which none of the desired product
was detected except a trace amount of direct Sonogashira coupling
byproduct (entry 16). Finally, the cross coupling seems not significantly
affected by the substituents on the aromatic moiety of the N-
tosylhydrazone component (entries 18-22).
In conclusion, we have developed a three-component coupling of
N-tosylhydrazones, terminal alkynes, and aryl halides Via a sequential
palladium carbene migratory insertion and reductive elimination
process, which forms two separate C-C bonds on a carbenic carbon.
This reaction provides a novel method for the synthesis of benzhydryl
acetylene derivatives from easily available starting materials.9 More
importantly, this study further demonstrates the possibility to incor-
porate Pd carbene migratory insertion with transmetalation of various
metal compounds. Investigation along this line is ongoing in our lab,
and the results will be reported in due course.
Table 2. Pd-Catalyzed Three-Component Coupling of Various
N-Tosylhydrazones, Terminal Alkynes, and Aryl Halidesa
Acknowledgment. The project was supported by the NSFC,
973 Program (No. 2009CB825300), GSK R&D China, and China
Postdoctoral Science Foundation.
entry
1, Ar )
2, Ar′ )
3, R )
yield, %b
Supporting Information Available: Additional mechanistic discus-
sion, experimental procedure, characterization data, and NMR spectra
for all new compounds. This material is available free of charge via
1
2
3
4
5
6
7
8
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
Ph
m-tolyl
p-anisyl
p-F-C6H4
2-naphthyl
o-PhC6H4
2,6-Me2C6H3
Ph
Ph
Ph
Ph
Ph
Ph
4b, 72
4c, 72
4d, 84
4e, 62
4f, 51
4g, 21
4h, 64
4i, 63
4j, 66
4k, 62
4l, 56
4m, 47
4n, 59
4o, 73
4p, 51
N.R.c
References
Ph
Ph
Ph
Ph
p-tolyl
(1) For selected reviews, see: (a) Davies, H. M. L.; Beckwith, R. E. J. Chem.
ReV. 2003, 103, 2861. (b) Ye, T.; McKervey, M. A. Chem. ReV. 1994, 94,
1091. (c) Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods
for Organic Synthesis with Diazo Compounds; Wiley- Interscience: New
York, 1998. (d) Zhang, Z.; Wang, J. Tetrahedron 2008, 64, 6577.
(2) (a) Greenman, K. L.; Carter, D. S.; Van Vranken, D. L. Tetrahedron 2001,
57, 5219. (b) Greenman, K. L.; Van Vranken, D. L. Tetrahedron 2005, 61,
6438. (c) Devine, S. K. J.; Van Vranken, D. L. Org. Lett. 2007, 9, 2047. (d)
Devine, S. K. J.; Van Vranken, D. L. Org. Lett. 2008, 10, 1909. (e) Kudirka,
R.; Van Vranken, D. L. J. Org. Chem. 2008, 73, 3585. (f) Peng, C.; Wang,
Y.; Wang, J. J. Am. Chem. Soc. 2008, 130, 1566. (g) Chen, S.; Wang, J.
Chem. Commun. 2008, 4198. (h) Yu, W.-Y.; Tsoi, Y.-T.; Zhou, Z.; Chan,
A. S. C. Org. Lett. 2009, 11, 469. (i) Kudirka, R.; Devine, S. K. J.; Adams,
C. S.; Van Vranken, D. L. Angew. Chem., Int. Ed. 2009, 48, 3677.
(3) (a) Barluenga, J.; Moriel, P.; Valde´s, C.; Aznar, F. Angew. Chem., Int. Ed.
2007, 46, 5587. (b) Barluenga, J.; Toma´s-Gamasa, M.; Moriel, P.; Aznar,
F.; Valde´s, C. Chem.sEur. J. 2008, 14, 4792. (c) Barluenga, J.; Escribano,
M.; Moriel, P.; Aznar, F.; Valde´s, C. Chem.sEur. J. 2009, 15, 3291. (d)
Xiao, Q.; Ma, J.; Yang, Y.; Zhang, Y.; Wang, J. Org. Lett. 2009, 11, 4732.
(e) Zhao, X.; Jing, J.; Lu, K.; Zhang, Y.; Wang, J. Chem. Commun. 2010,
1724.
p-ClC6H4
p-anisyl
p-CF3C6H4
2-(6-MeO)naph
PhCH2CH2
n-C4H9
TMS
CH2OTHP
CO2Et
3-thienyl
Ph
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Ph
2-naphthyl
o-PhC6H4
2-naphthyl
Ph
Ph
Ph
Ph
Ph
Ph
Ph
4q, 84
4r, 73
4s, 60
4t, 41
4u, 55
4v, 75
p-tolyl
3,4-(MeO)2-C6H3
3,4-Cl2C6H3
2-hexynlC6H4
p-tolyl
Ph
Ph
Ph
p-anisyl
3-thieny
a All the reactions were carried out with N-tosylhydrazone (0.2
mmol), aryl bromide (1.1 equiv), terminal alkyne (1.1 equiv) in the
presence of Pd2(dba)3 (2.5 mol %), Xphos (10 mol %), CuI (7.5 mol %),
and LiOBut in 0.8 mL of toluene at 90 °C for 1 h. b Isolated yield.
c N.R.: No reaction.
(4) Zhang, Z.; Liu, Y.; Gong, M.; Zhao, X.; Zhang, Y.; Wang, J. Angew. Chem.,
Int. Ed. 2010, 46, 1139.
(5) For an early study on Pd-catalyzed reaction of R-diazocarbonyl compounds,
see: Taber, D. F.; Amedio, J. C., Jr.; Sherrill, R. G. J. Org. Chem. 1986, 51,
3382.
(6) For selected references on the formation of sp-sp3 bond Via Sonogashira
coupling see: (a) Eckhardt, M.; Fu, G. C. J. Am. Chem. Soc. 2003, 125,
13642. (b) Larsen, C. H.; Anderson, K. W.; Tundel, R. E.; Buchwald, S. L.
Synlett 2006, 2941. (c) Altenhoff, G.; Wu¨rtz, S.; Glorius, F. Tetrahedron
Lett. 2006, 47, 2925. (d) Caeiro, J.; Sestelo, J. P.; Sarandeses, L. A.
Chem.sEur. J. 2008, 14, 741.
A plausible mechanism is proposed as shown in Scheme 2.8 The
oxidative addition of Pd(0) to aryl bromide to afford intermediate
A, which may undergo a competing transmetalation with in situ
generated copper acetylide. Subsequently, reductive elimination
occurs to afford direct Sonogashira coupling product 5. Conversely,
a diazo substrate is generated in situ from N-tosylhydrazone in the
presence of base. Decomposition of the diazo compound by Pd(II)
species A leads to palladium carbene B. Migratory insertion of an
aryl group to the carbenic carbon gives intermediate C, from which
(7) (a) Sonogashira, K. In Handbook of Organopalladium Chemistry for Organic
Synthesis; Negishi, E.-i., Ed.; Wiley-Interscience: New York, 2002; pp 493.
(b) Negishi, E.-i.; Anastasia, L. Chem. ReV. 2003, 103, 1979.
(8) For more mechanistic discussions, see Supporting Information.
(9) (a) Kabalka, G. W.; Yao, M.-L.; Borella, S. Org. Lett. 2006, 8, 879. (b)
Xiang, S.-K.; Zhang, L.-H.; Jiao, N. Chem. Commun. 2009, 6487.
JA105762N
9
J. AM. CHEM. SOC. VOL. 132, NO. 39, 2010 13591