inherent low reactivity of enones in BH reactions by the use
of high pressure systems,7 microwave irradiation,8 ultra-
sonic waves,9 nonamine nucleophiles,10 solid-supported
reagents,11 ionic liquids,12 Lewis acids,13 and organo-
catalysts.14 A particular improvement in BH reactions is
gained by employment of aqueous media,15 the conditions
known to boost the selectivity and reactivity of many syn-
thetic organic transformations.16
Another limitation to BH reactions is the parallel com-
petition of aldol reaction/condensation in the case of
substrateswithacidicR hydrogens.17 Moreover, utilization
of heterocyclic enones with an electron-donating nature in
BH reactions has still remained a challenge.2 Because of
our experience on thiopyran heterocyclic systems,18 we
envisaged that enone 1a would be an appropriate probe to
tackle these limitations.19 As a result of our studies, we
hereby disclose the potential of an aqueous organocataly-
tic system that can direct the reaction of 1a with aldehydes
to selectively undergo either BH or aldol reactions. To the
best of our knowledge, this is the first report on BH and
aldol reactions in the dihydrothiopyran-4-one system
(Scheme 1).
A variety of conditions were examined to optimize the
addition of 1a20 to benzaldehyde using different amines
and solvents. The best results were obtained when DBU
was added to an aqueous mixture of the reactants without
organic solvents (Table 1). Under these conditions, cata-
lytic quantities of DBU were effective to obtain 2a within 8
h (entry 1). When other aldehydes bearing electron-with-
drawing groups were used, products 2bÀf were obtained
within the same time period (entries 2À6).
Table 1. BH Reactions of 1a with Aldehydes
entry
Ar
C6H5
product
time (h)
yield (%)a
1
2
3
4
5
6
7
8
9
2a
2b
2c
2d
2e
2f
8
4
4
7
6
6
4
2
1
68
73
70
67
72
68
62
60
52
3-FC6H4
4-FC6H4
3-ClC6H4
4-ClC6H4
3-BrC6H4
2-thienyl
2-NO2C6H4
4-CF3C6H4
Scheme 1. Competition of BH and Aldol Reactions in 1a:
Possibilities and Potentials
2g
2h
2i
a Yields of isolated products.
Under the same conditions, aldehydes with a more
electron-deficient nature disappeared faster. However,
they gave lower yields of their respective BH adducts
2hÀi (entries 8À9), due to the effective competition of an
aldolcondensation reaction to giveproductsof type4. This
encouraged us to find the optimized conditions for the
synthesis of 4 as well. Consequently, when we substituted
DBU withDMAP (10%), highyields ofvarious products4
were obtained at room temperature within relatively short
time periods (Table 2). In this case, electron-rich aldehydes
such as 4-MeOC6H4CHO reacted sluggishly giving low
yields of aldol products (entry 12).
(8) Kundu, M. K.; Mukherjee, S. B.; Balu, N.; Padmakumar, R.;
Bhat, S. V. Synlett 1994, 444.
(9) Coelho, F.; Diaz, G.; Abella, C. A. M.; Almeida, W. P. Synlett
2006, 435.
(10) (a) Pereira, S. I.; Adrio, J.; Silva, A. M. S.; Carretero, J. C. J. Org.
Chem. 2005, 70, 10175. (b) Cho, C.-W.; Kong, J.-R.; Krische, M. J. Org.
Lett. 2004, 6, 1337. (c) Zhong, F.; Wang, Y.; Han, X.; Huang, K.-W.; Lu,
Y. Org. Lett. 2011, 13, 1310. (d) del Villar, I. S.; Gradillas, A.;
With these results in hand, we were encouraged to
investigate the feasibility of halting the aldol process before
the dehydration step occurs. The experiments carried out
with other amines in water showed that the use of DABCO
ꢀ
Domınguez, G.; Perez-Castells, J. Org. Lett. 2011, 12, 2418.
´
(11) (a) Zhao, L.-J.; Kwong, C. K.-W.; Shia, M.; Toy, P. H. Tetra-
hedron 2005, 61, 12026. (b) Sheng, S. R.; Wang, Q.; Wang, Q. Y.; Guo,
L.; Liu, X. L.; Huang, X. Synlett 2006, 1887.
(12) (a) Mi, X.; Luo, S.; Xu, H.; Zhanga, L.; Cheng, J.-P. Tetrahedron
2006, 62, 2537. (b) Yunkyung, Y.; Ryu, J.-S. J. Org. Chem. 2010, 75,
4183.
(13) (a) Lee, S. I.; Hwang, G. S.; Ryu, D. H. Synlett 2007, 59. (b) Pan,
W.; Dong, D. W.; Sun, S. G.; Liu, Q. Synlett 2006, 1090. (c) Patel, C.;
Sunoj, R. B. J. Org. Chem. 2010, 75, 359. (d) Bugarin, B.; Connell, B. T.
J. Org. Chem. 2009, 74, 4638.
(14) (a) Kawahara, S.; Nakano, A.; Esumi, T.; Iwabuchi, Y.;
Hatakeyama, S. Org. Lett. 2003, 5, 3103. (b) Wadhwa, K.; Chintareddy,
V. R.; Verkade, J. G. J. Org. Chem. 2009, 74, 6681. (c) Guan, X.-Y.; Wei,
Y.; Shi, M. J. Org. Chem. 2009, 74, 6343. (d) Wang, J.; Li, H.; Yu, X.; Zu,
L.; Wang, W. Org. Lett. 2005, 7, 4293. (e) Berkessel, A.; Roland, K.;
Neudorfl, J. M. Org. Lett. 2006, 8, 4195.
(16) (a) Butler, R. N.; Coyne, A. G. Chem. Rev. 2010, 110, 6302. (b)
Chanda, A.; Fokin, V. V. Chem. Rev. 2009, 109, 725.
(17) Basavaiah, D.; Sreenivasulu, B.; Rao, A. J. J. Org. Chem. 2003,
68, 5983.
(18) (a) Abaee, M. S.; Mojtahedi, M. M.; Zahedi, M. M.; Sharifi, R.;
Khavasi, H. Synthesis 2007, 3339. (b) Abaee, M. S.; Mojtahedi, M. M.;
Zahedi, M. M. Synlett 2005, 2317. (c) Abaee, M. S.; Mojtahedi, M. M.;
Akbari, M.; Mehraki, E.; Mesbah, A. W.; Harms, K. J. Heterocycl.
Chem. 2011in press.
(19) For other synthetic utilities of thiopyran 1a, see: (a) Beye, G. E.;
Ward, D. E. J. Am. Chem. Soc. 2010, 132, 7210. (b) Rosiak, A.; Frey, W.;
Christoffers, J. Eur. J. Org. Chem. 2006, 4044.
(15) (a) Patra, A.; Roy, A. K.; Batra, S.; Bhaduri, A. P. Synlett 2002,
1819. (b) Yu, C.; Liu, B.; Hu, L. J. Org. Chem. 2001, 66, 5413. (c) Luo, S.;
Wang, P. G.; Cheng, J.-P. J. Org. Chem. 2004, 69, 555.
(20) Compound 1a was synthesized according to an available proce-
dure. For details, see: Chen, C. H.; Reynolds, G. A.; Van Allen, J. A.
J. Org. Chem. 1977, 42, 2777.
Org. Lett., Vol. 13, No. 19, 2011
5283