4814
J. W. Shearman et al. / Tetrahedron Letters 51 (2010) 4812–4814
3. (a) Schoenfeld, R. C.; Ganem, B. Tetrahedron Lett. 1998, 39, 4147–4150; (b)
Table 1
Tsukamoto, S.; Kato, H.; Hirota, H.; Fusetani, N. Tetrahedron 1996, 52, 181–186;
(c) Ortlepp, S.; Sjögren, M.; Dahlström, M.; Weber, H.; Ebel, R.; Edrada, R.;
Thoms, C.; Schupp, P.; Bohlin, L.; Proksch, P. Marine Biotech. 2007, 9, 776–785.
4. Jang, J. –H.; van Soest, R. W. M.; Fusetani, N.; Matsunaga, S. J. Org. Chem. 2007,
72, 1211–1217.
Cytotoxic activities of natural products 3, 4, and 5 against HeLa and HUVEC cell lines
Compound
Cell line [IC50
(l
M)]
HUVEC
HeLa
5. Takada, N.; Watanabe, R.; Suenaga, K.; Yamada, K.; Ueda, K.; Kita, M.; Uemura,
D. Tetrahedron Lett. 2001, 42, 5265–5267.
Ianthelline (3)
5-Bromoverongamine (4)
JBIR-44 (5)
35
>50
14
74
36
24
6. (a) Hernández–Guerrero, C. J.; Zubía, E.; Ortega, M. J.; Luis Carballo, J. Bioorg.
Med. Chem. 2007, 15, 5275–5282; (b) Shinde, P. B.; Lee, Y. M.; Dang, H. T.; Hong,
J.; Lee, C.-O.; Jung, J. H. Bioorg. Med. Chem. Lett. 2008, 18, 6414–6418.
7. (a) Manzo, E.; van Soest, R.; Matainaho, L.; Roberge, M.; Andersen, R. J. Org. Lett.
2003, 5, 4591–4594; (b) Karjala, G.; Chan, Q.; Manzo, E.; Andersen, R. J.;
Roberge, M. Cancer Res. 2005, 65, 3040–3043; (c) Coleman, R. S.; Campbell, E. L.;
Carper, D. J. Org. Lett. 2009, 11, 2133–2136.
cytotoxic (IC50 35
active (IC50 >50 M). Since the related dibromotyrosine derivative
aeroplysinin-1 has been reported to inhibit the proliferation of the
M),29 it was also of inter-
lM) and 5-bromoverongamine (4) was the least
l
8. Córdoba, R.; Salvador Tormo, N.; Medarde, A. F.; Plumet, J. Bioorg. Med. Chem.
2007, 15, 5300–5315.
bovine arterial endothelial cells (IC50 ꢂ2
l
9. (a) Piña, I. C.; Gautschi, J. T.; Wang, G. Y.; Sanders, M. L.; Schmitz, F. J.; France,
D.; Cornell–Kennon, S.; Sambucetti, L. C.; Remiszewski, S. W.; Perez, L. B.; Bair,
K. W.; Crews, P. J. Org. Chem. 2003, 68, 3866–3873; (b) Buchanan, M. S.; Carroll,
A. R.; Fechner, G. A.; Boyle, A.; Simpson, M.; Addepalli, R.; Avery, V. M.; Hooper,
J. N. A.; Cheung, T. H. C.; Quinn, R. J. J. Nat. Prod. 2008, 71, 1066–1067.
10. Litaudon, M.; Guyot, M. Tetrahedron Lett. 1986, 27, 4455–4456.
11. Thirionet, I.; Daloze, D.; Braekman, J. C.; Willemsen, P. Nat. Prod. Lett. 1998, 12,
209–214.
12. Kottakota, S. K.; Harburn, J. J.; O’Shaughnessy, A.; Gray, M.; Konstanidis, P.;
Yakubu, D. E. 13th International Electronic Conference on Synthetic Organic
Chemistry (ESOC-13), 1–30 November, 2009.
13. Fujiwara, T.; Hwang, J. H.; Kanamoto, A.; Nagai, H.; Takagi, M.; Shinya, K. J.
Antibiot. 2009, 62, 393–395.
est to investigate the activity against endothelial cells. To this end,
an xCELLigence assay using human umbilical vein endothelial cells
(HUVECs) was conducted and all the three compounds (Table 1)
were found to be cytotoxic to HUVECs in the micromolar range
(IC50 24–74 lM).
In conclusion, the total syntheses of the bromotyrosine-derived
products ianthelline (3), 5-bromoverongamine (4) and JBIR-44 (5),
obtained in five steps from the commercially available aldehyde
10, have been reported. Ianthelline and JBIR-44 exhibit anticancer
activity in HeLa cells and all the three compounds were cytotoxic
towards HUVECs. In addition, this short synthetic route will allow
for rapid development of analogues to explore structure–activity
relationships.
14. (a) Nishiyama, S.; Yamamura, S. Bull. Chem. Soc. Jpn. 1985, 3453–3456; (b) Zhu,
G.; Yang, F.; Balachandran, R.; Höök, P.; Vallee, R. B.; Curran, D. P.; Day, B. W. J.
Med. Chem. 2006, 49, 2063–2076.
15. Wasserman, H. H.; Wang, J. J. Org. Chem. 1998, 63, 5581–5586.
16. García, J.; Pereira, R.; de Lera, A. R. Tetrahedron Lett. 2009, 50, 5028–5030.
17. Godert, A. M.; Angelino, N.; Woloszynska-Read, A.; Morey, S. R.; James, S. R.;
Karpf, A. R.; Sufrin, J. R. Bioorg. Med. Chem. Lett. 2006, 16, 3330–3333.
18. Boehlow, N. T. R.; Harburn, J.; Spilling, C. D. J. Org. Chem. 2001, 66, 3111–3118.
19. Bailey, K. L.; Molinski, T. F. Tetrahedron Lett. 2002, 43, 9657–9661.
20. Okamoto, K. J.; Clardy, J. Tetrahedron Lett. 1987, 28, 4969–4972.
21. Erlenmeyer, E. Justus Liebigs Ann. Chem. 1893, 275, 1–8.
22. Crystal data for 11: C12H9Br2NO3, M = 375.02, monoclinic, space group P2(1)/c,
a = 11.5810(3) Å, b = 14.3132(3) Å, c = 7.6379(2) Å, V = 1261.35(8) Å3, Z = 4,
Dc = 1.975 Mg mꢀ3, T = 180(2) K. CCDC 778410.
23. Prepared following the procedure described in Yang, F. Ph.D. Thesis, University
of Pittsburgh, 2006.
Acknowledgements
This research was funded by the Cambridge Cancer Research UK
PhD Training Programme in Medicinal Chemistry (J.W.S. and
T.M.B.). The authors thank Dr. John E. Davies of the X-ray facility
of the Department of Chemistry for collecting the crystallographic
data.
24. Prepared following the procedure described in Ullah, N.; Arafeh, K. M.
Tetrahedron Lett. 2009, 50, 158–160.
Supplementary data
25. For the natural sample, the authors report a strong m-coupling between
aromatic protons H-1 and H-5 (dH 7.52) and the aromatic carbon (dC 152.0) and
also observe the long range coupling of methylene protons H–7 (dH 3.87) to C-8
(dC 153.8). However, in the synthetic sample, we observe a strong m-coupling
between aromatic protons H-1 and H-5 (dH 7.52) and the signal at (dC 153.8)
Supplementary data (synthesis procedures, spectral data, 13C
NMR for natural and synthetic 4, HMBC spectra for synthetic 5, bio-
logical assay protocols) associated with this article can be found, in
which we have assigned to C-3. There is also
a long range coupling of
methylene protons H-7 (dH 3.87) to the signal at (dC 152.0) which we have
assigned to C-8. The HMBC spectra for the natural sample are not available for
direct comparison.
26. The original 13C NMR spectrum for the natural material was kindly provided by
Professor Jean Claude Braekman for comparison and is included in the
Supplementary data.
References and notes
1. (a) Hentschel, F.; Lindel, T. Synthesis 2010, 181–204; (b) Fusetani, N.; Masuda,
Y.; Nakao, Y.; Matsunaga, S.; van Soest, R. W. M. Tetrahedron 2001, 57, 7507–
7511; (c) Benharref, A.; Païs, M.; Debitus, C. J. Nat. Prod. 1996, 59, 177–180; (d)
Aiello, A.; Fattorusso, E.; Menna, M.; Pansini, M. Biochem. Syst. Ecol. 1995, 23,
377–381; (e) Albrizio, S.; Ciminiello, P.; Fattorusso, E.; Magno, S.; Pansini, M.
Tetrahedron 1994, 50, 783–788; (f) Kernan, M. R.; Cambie, R. C.; Bergquist, P. R.
J. Nat. Prod. 1990, 53, 615–622.
27. Crystal data for 4: C15H16Br2N4O3, M = 460.14, monoclinic, space group P2(1)/n,
a = 8.9668(2) Å, b = 21.2760(3) Å, c = 9.3347(2) Å, V = 1752.45(6) Å3, Z = 4,
Dc = 1.744 Mg mꢀ3, T = 180(2) K. CCDC 777660.
28. The (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophe-
nyl)-2H-tetrazolium) (MTS) assay gives a colourimetric measure of the number
of viable cells present in vitro.
2. Pick, N.; Rawat, M.; Arad, D.; Lang, J.; Fan, J.; Kende, A. S.; Av-Gay, Y. J. Med.
Microbiol. 2006, 55, 407–415.
29. Rodríguez-Nieto, S.; González-Iriarte, M.; Carmona, R.; Muñoz-Chápuli, R.;
Medina, M. A.; Quesada, A. R. FASEB J. 2002, 16, 261–263.