10768 J. Phys. Chem. A, Vol. 114, No. 40, 2010
Ciorba et al.
(3) Singh, A. K.; Darsi, M.; Kanvah, S. J. Phys. Chem. A 2000, 104,
(<0.1%) and the triplet yield, evaluated by the yield of singlet
oxygen production, is substantial (24% in toluene). However,
the isomerization yield is small (5% in toluene and even smaller
in AcN), indicating that the triplet state decays directly to the
ground state from a transoid geometry before twisting to the
3P* configuration. The reactivity of 2 is then similar to that of
the symmetric dinitro derivative with the difference that the
nonreactive ICT state prevalently decays by the radiative
pathway in our case and nonradiatively for the symmetric
compound.40
464–471.
(4) Pines, D.; Pines, E.; Rettig, W. J. Phys. Chem. A 2003, 107, 236–
242, and references therein.
(5) Chemia, D. S., Zyss, J., Eds. Nonlinear Optical Properties of
Organic Molecules and Crystals, Vols 1 and 2, Academic Press: New York,
1986; see also references cited therein.
(6) Bradamante, S.; Facchetti, A.; Pagani, G. A. J. Phys. Org. Chem.
1997, 10, 514–524.
(7) Spalletti, A.; Bartocci, G.; Elisei, F.; Masetti, F.; Mazzucato, U.
Proc. Indian Acad. Sci. (Chem. Sci.) 1998, 110, 297–310.
(8) Giglio, L.; Mazzucato, U.; Musumarra, G.; Spalletti, A. Phys. Chem.
Chem. Phys. 2000, 2, 4005–4012.
(9) Marri, E.; Pannacci, D.; Galiazzo, G.; Mazzucato, U.; Spalletti, A.
J. Phys. Chem. A 2003, 107, 11231–11238.
(10) Ginocchietti, G.; Galiazzo, G.; Mazzucato, U.; Spalletti, A. Pho-
tochem. Photobiol. Sci. 2005, 4, 547–553.
(11) Marri, E.; Galiazzo, G.; Mazzucato, U.; Spalletti, A. Chem. Phys.
2005, 312, 205–211.
(12) Marri, E.; Elisei, F.; Mazzucato, U.; Pannacci, D.; Spalletti, A. J.
Photochem. Photobiol. A: Chem. 2006, 177, 307–313.
(13) Ginocchietti, G.; Galiazzo, G.; Pannacci, D.; Mazzucato, U.;
Spalletti, A. Chem. Phys. 2006, 331, 164–172.
(14) Ciorba, S.; Bartocci, G.; Galiazzo, G.; Mazzucato, U.; Spalletti,
A. J. Photochem. Photobiol., A: Chem. 2008, 195, 301–306.
(15) Ginocchietti, G.; Mazzucato, U.; Spalletti, A. J. Photochem.
Photobiol., A: Chem. 2008, 196, 233–238.
(16) Bartocci, G.; Ciorba, S.; Mazzucato, U.; Spalletti, A. J. Phys. Chem.
A 2009, 113, 8557–8568.
(17) Ito, Y.; Uozu, Y.; Dote, T.; Ueda, M.; Matsuura, T. J. Am. Chem.
Soc. 1988, 110, 189–198.
(18) H. Braatz, H.; Hecht, S.; Seifert, H.; Helm, S.; Bendig, J.; Rettig,
W. J. Photochem. Photobiol. A: Chem. 1999, 123, 99–108.
(19) Singh, A. K.; Darshi, M.; Kanvah, S. New. J. Chem. 1999, 23,
1075–1078.
(20) Singh, A. K.; Mahalaxmi, G. R. Photochem. Photobiol. 2000, 71,
387–396.
(21) Bartocci, G.; Masetti, F.; Mazzucato, U.; Spalletti, A.; Baraldi, I.;
Momicchioli, F. J. Phys. Chem. 1987, 91, 4733–4743.
(22) Murov, S. L.; Carmichael, I.; Hug, G. L. Handbook of Photochem-
istry, 2nd ed.; M. Dekker: New York, 1993.
(23) Mazzucato, U.; Momicchioli, F. Chem. ReV. 1991, 91, 1679–1719.
(24) Bartocci, G.; Spalletti, A.; Mazzucato, U. In Conformational
Analysis of Molecules in Excited States; Waluk, J., Ed.; Wiley-VCH: New
York, 2000; Chapter 5 (see also references therein).
(25) Meier, H. Angew. Chem., Int. Ed. Engl. 1992, 31, 1399–1540.
(26) Barigelletti, F.; Dellonte, S.; Orlandi, G.; Bartocci, G.; Masetti, F.;
Mazzucato, U. J. Chem. Soc., Faraday Trans. I 1984, 80, 1123–1129.
(27) Saltiel, J.; Sun, Y.-P. In Photochromism: Molecules and Systems;
Du¨rr, H., Bouas-Laurent, H., Eds.; Elsevier: Amsterdam, 1990; pp 64-
162 (see also references therein).
It can be noted that even in these systems, the symmetrical
ICT from the side D groups to the conjugated bridge (or vice
versa for the A groups) can be correlated with changes in the
S0 f S1 and S1 f S2 transition moments and then with the
magnitude of the two-photon absorption cross section, a property
that is interesting for a variety of applications.41
4. Conclusions
The described results allowed the fluorescence/photoisomer-
ization competition of the four geometrical isomers of two
asymmetric distyrylbenzene analogues with side aryl groups of
different donor/acceptor character to be evaluated in CH and
AcN. A selective photoconversion of the all-trans isomers was
found for both compounds in both solvents, largely favoring
the double bond closest to the donor group for compound 1
and in complete favor of the double bond adjacent to the
acceptor group for compound 2.
The role of conformational equilibria has been also estimated
with the help of theoretical calculations. The ICT character of
the excited states was found to characterize the relaxation
quantum yields. While the relatively weak donor/acceptor
properties of 4P and 2T in compound 1 induce rather modest
ICT, mainly revealed by the sizable red shift of fluorescence,
the role of the charge redistribution was particularly important
for the nitro derivative. An abundant triplet yield of the latter
was not accompanied by efficient isomerization in the triplet
manifold. The polarity of the solvent plays a modest role on
the deactivation parameters of the thienyl derivative even if the
photoisomerization mechanism changes from adiabatic to mixed
adiabatic/diabatic for the ZE and ZZ isomers. On the contrary,
the polarity of the solvent strongly affects the decay of the nitro
derivative favoring the radiative decay to the detriment of
photoisomerization that proceeds through an adiabatic pathway
in the case of ZE and ZZ in both solvents.
(28) Robb, M. A.; Bernardi, F.; Olivucci, M. Pure Appl. Chem. 1995,
67, 783–789.
(29) Bearpark, M. J.; Bernardi, F.; Cliford, S.; Olivucci, M.; Robb, M. A.;
Vreven, T. J. Phys. Chem. A 1997, 101, 3841–3847.
(30) Levine, B. G.; Martinez, T. J. Annu. ReV. Phys. Chem. 2007, 58,
613–634.
(31) Bartocci, G.; Mazzucato, U.; Spalletti, A. Trends Phys. Chem. 2007,
12, 1–36.
Acknowledgment. We gratefully acknowledge the skilful
technical assistance of Danilo Pannacci in the analytical and
preparative HPLC measurements.
(32) Saltiel, J.; Sears, D. F.; Choi, J.-O.; Sun, Y.-P.; Eaker, D. W. J.
Phys. Chem. 1984, 98, 35–46.
(33) Arai, T.; Karatsu, T.; Misawa, H.; Kuriyama, Y.; Okamoto, H.;
Hiresaki, T.; Furuuchi, H.; Zeng, H.; Sakuragi, H.; Tokumaru, K. Pure Appl.
Chem. 1988, 60, 989–998.
(34) Arai, T.; Tokumaru, K. AdV. Photochem. 1995, 20, 1–57, and
references cited therein.
(35) M. Sundahl, M.; Wennerstro¨m, O.; Sandros, K.; Arai, T.; Tokumaru,
K. J. Phys. Chem. 1990, 94, 6731–6734.
(36) Bartocci, G.; Mazzucato, U.; Spalletti, A. Recl. TraV. Chim. Pays-
Bas 1995, 114, 459–464.
(37) Bartocci, G.; Spalletti, A.; Mazzucato, U. Res. Chem. Intermed.
1995, 21, 735–747.
(38) Bonacˇic¨-Koutecky´, V.; Koutecky´, J.; Michl, J. Angew. Chem., Int.
Ed. Engl. 1987, 26, 170–189.
Supporting Information Available: Calculated electronic
spectra (transition energy and oscillator strength), dipole mo-
ments, bond lengths, heats of formation, dihedral angles between
the ethenic bridge and the side or central aromatic rings, and
map of the MOs involved in the first electronic transition of
the isomers of the p-NO2 derivative. LC/MS analysis data for
all geometrical isomers and characterization of the ZZ isomers
1
by H NMR. This material is available free of charge via the
(39) Rettig, W. Top. Curr. Chem. 1994, 169, 253–299, and references
therein.
(40) Go¨rner, H. J. Photochem. 1999, 126, 15–21.
(41) Albota, M.; Beljonne, D.; Bre´das, J.-L.; Ehrlich, J. E.; Fu, J.-Y.;
Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-
Maughon, D.; Perry, J. W.; Ro¨ckel, H.; Rumi, M.; Subramaniam, G.; Webb,
W. W.; Wu, X.-L.; Xu, C. Science 1998, 281, 1653–1656.
References and Notes
(1) Rettig, W.; Majenz, W.; Herter, R.; Le´tard, J. F.; Lapouyade, R.
Pure Appl. Chem. 1993, 65, 1699–1704.
(2) Abraham, E.; Oberle´, J.; Jonusauskas, G.; Lapouyade, R.; Rullie`re,
C. Chem. Phys. 1997, 214, 409–423, and references therein.
JP105383E