P. V. Chaturvedula et al. / Tetrahedron Letters 51 (2010) 5588–5591
5591
17. Chiral HPLC analysis was performed to determine the enantiomeric excess of
7a–c, 8a–c, 9a–c, 11a–b, 12a–b and their enantiomers. The analysis was
performed on a Chiralcel OD-H analytical column (4.6 ꢁ 250 mm, 5 mm) using
15% isopropanol in CO2 at 150 Bar and at 35 °C as mobile phase at a flow rate of
References and notes
1. Hruby, V. J.; Li, G.; Haskell-Luevano, C.; Shenderovich, M. Biopolymers 1997, 43,
219.
2.0 mL/min. Absorbance was measured at 220 nm and 5 lL of 1 mg/mL of 7a–c
2. (a) Freidinger, R. M.; Veber, D. F.; Perlow, D. S.; Brooks, J. R.; Saperstein, R.
Science 1980, 210, 656; (b) Warshawsky, A. M.; Flynn, G. A.; Koehl, J. R.; Mehdi,
S. Bioorg. Med. Chem. Lett. 1996, 6, 957; (c) Valle, G.; Kazmierski, W. M.; Crisma,
M.; Bonora, G.; de Laszlo, S. E.; Bush, B. L.; Doyle, J. J.; Greenlee, W. J.; Hangauer,
D. G.; Halgren, T. A.; Lynch, R. J.; Schorn, T. W.; Siegl, P. K. S. J. Med. Chem. 1992,
35, 833.
3. (a) Kazmierski, W. M.; Yamamura, H. I.; Hruby, V. J. J. Am. Chem. Soc. 1991, 113,
2275; (b) Kyle, D. J.; Martin, J. A.; Burch, R. M.; Carter, J. P.; Lu, S.; Meeker, S.;
Prosser, J. C.; Sullivan, J. P.; Togo, J.; Noronha-Blob, L.; Sinsko, J. A.; Walters, R.
F.; Whaley, L. W.; Hiner, R. N. J. Med. Chem. 1991, 34, 2649–2653; (c) Otvos, F.;
Gembitsky, D. S.; Murphy, R. F.; Lovas, S. Int. J. Peptide Protein Res. 2007, 13, 329;
(d) Caliendo, G.; Calignano, A.; Grieco, P.; Mancuso, F.; Perisutti, E.; Santini, A.;
Santagada, V. Biopolymers 1995, 36, 409; Pimenta, D. C.; Melo, L. R.; Caliendo,
G.; Santagada, V.; Fiorono, F.; Severino, B.; De Nucci, G.; Juliano, M. Biol. Chem.
2002, 383, 853.
or their enantiomers in ethanol was injected. Compound 7a had a retention
time of 11.91 min (its enantiomer had a retention time of 14.2 min) and an
enantiomeric excess of 7a was determined to be 99.4%. The retention times for
the other compounds are: 8a has a retention time of 4.51 min (Chiracel AD-H
column, 15% methanol in CO2 as mobile phase, 8.63 min for its enantiomer), 8b
has a retention time of 9.99 min (Chiracel OD-H column, 15% isopropanol in
CO2 as mobile phase, 8.43 min for its enantiomer), 8c has a retention time of
13.27 min (Chiracel AD-H column, 15% isopropanol in CO2 as mobile phase,
14.25 min for its enantiomer), 9a has a retention time of 18.36 min (Chiracel
OJ-H column, 8% isopropanol in CO2 as mobile phase, 20.81 min for its
enantiomer), 9b has a retention time of 33.15 min (Chiracel OJ-H column, 8%
isopropanol in CO2 as mobile phase, 29.97 min for its enantiomer), 9c has
,
30.60 min (Chiracel OJ-H column, 7% isopropanol in CO2 as mobile phase,
27.50 min for its enantiomer), 11a has a retention time of 10.6 min (Chiracel AS
column, 90% heptane—10% methanol as mobile phase, 13.0 min for its
enantiomer), 12a has a retention time of 12.65 min (Chiracel OJ-H column,
10% methanol in CO2 as mobile phase, 11.2 min for its enantiomer).
4. Valle, G.; Kazmierski, W. M.; Crisma, M.; Bonora, G. M.; Toniolo, C.; Hruby, V. J.
Int. J. Peptide Protein Res. 1992, 40, 222.
5. Severino, B.; Santagada, V.; Frecentese, F.; Perisutti, E.; Terracciano, S.; Fiorino,
F.; Cirillo, D.; Salvadori, S.; Balboni, G.; Calendo, G. Synthesis 2004, 18, 3011.
6. Page, D.; McClory, A.; Mischki, T.; Schmidt, R.; Butterworth, J.; St-Onge, S.;
Labarre, M.; Payza, K.; Brown, W. Bioorg. Med. Chem. Lett. 2000, 10, 167.
7. (a) Julian, P. L.; Karpel, W. J.; Magnani, A.; Meyer, E. W. J. Am. Chem. Soc 1948,
70, 182; (b) Archer, S. J. Org. Chem. 1951, 16, 430; (c) Hayashi, K.; Ozaki, Y.;
Nunami, K.; Yoneda, N. Chem. Pharm. Bull. 1983, 31, 312; Ruzza, P.; Caldern, A.;
Osler, A.; Elardo, S.; Borin, G. Tetrahedron Lett. 2002, 43, 3769–3771.
8. (a) Verschueren, K.; Toth, G.; Tourwe, D.; Lebl, M.; Van Binst, G.; Hruby, V.
Synthesis 1992, 458; (b) Faul, M. M.; Winneroski, L. L.; York, J. S.; Reinhard, M.
R.; Hoying, R. C.; Gritton, W. H.; Dominiami, S. J. Heterocycles 2001, 55, 689; (c)
Liu, C.; Thomas, J. B.; Brieaddy, L.; Berrang, B.; Ivy Carroll, F. Synthesis 2008, 6,
856.
18. Xu, Y.-C.; Bizuneh, A.; Walker, C. J. Org. Chem. 1996, 61, 9086.
19. Chiral HPLC analysis was performed to determine the enantiomeric excess of
14, 15, 16, 18 and 19 and their enantiomers. The analysis was performed on a
Chiralcel analytical column (4.6 ꢁ 250 mm, 5 mm) using 15% isopropanol in
CO2 at 150 Bar and at 35 °C as mobile phase at a flow rate of 2.0 mL/min.
Absorbance was measured at 220 nm and 5 lL of 1 mg/mL of compound in
ethanol was injected. The retention times are: 15 has a retention time of
5.01 min (Chiracel OD-H column, 20% isopropanol in CO2 as mobile phase,
4.30 min for its enantiomer), 16 has a retention time of 4.37 min (Chiracel OD-
H
column, 20% isopropanol in CO2 as mobile phase, 4.96 min for its
enantiomer), 18 has a retention time of 9.60 min (Chiracel AD column, 8%
ethanol in CO2 as mobile phase, 10.7 min for its enantiomer) and 19 has a
retention time of 20.6 min (Chiracel AD-H column, 10% ethanol in CO2 as
mobile phase, 25.5 min for its enantiomer).
9. Santagada, V.; Fiorino, F.; Severino, B.; Salvadori, S.; Lazarus, L. H.; Bryant, S. D.;
Caliendo, G. Tetrahedron Lett. 2001, 42, 3507.
20. Yields were not optimized. All compounds gave satisfactory spectroscopic
data consistent with the proposed structures. Data for selected compounds
14: 1H NMR (500 MHz, DMSO-d6) showed a mixture of rotamers doubling
most signals d ppm 3.02–3.16 (m, 2H) 3.50 and 3.55 (2s, 3H, OCH3, rotamers)
4.40–4.63 (2 d, J = 16.50 Hz, 1H, rotamers) 4.66–4.75 (2 d, J = 16.50 Hz, 1H,
rotamers) 4.85–5.19 (m, 5H), 6.80–6.86 (m, 1H), 6.90–6.97 (m, 1H), 7.08–7.15
(m, 1H), 7.25–7.52 (m, 10 H); MS (ES), 454 (M+Na)+ 15: 1H NMR (500 MHz,
chloroform-d) showed a mixture of rotamers doubling most signals d ppm
1.50 (s, 9H), 2.09 and 2.17 (s, 3H,) 3.08–3.28 (m, 2H) 3.52 and 3.59 (2s, 3H,
OCH3, rotamers) 4.48–4.57 (2 d, J = 17.20 Hz, 1H, rotamers) 4.79–4.95 (2 d,
J = 17.20 Hz, 1H, rotamers) 5.14–5.33 (m, 3H) 6.25 and 6.26 (2s, 1H,
rotamers), 6.90 (s, 1H) 7.28–7.46 (m, 5H), 7.62 (s, 1H); MS (ES), 477
(M+Na)+ 16: 1H NMR (500 MHz, chloroform-d) showed a mixture of rotamers
doubling most signals d ppm 1.53 (s, 9H), 2.09 and 2.14 (2s, 3H, rotamers)
3.06–3.31 (m, 2H) 3.57 and 3.63 (2s, 3H, OCH3, rotamers) 4.38–4.56 (2 d,
J = 16.94 Hz, 1H, rotamers) 4.78 (2 d, J = 16.94 Hz, 1H, rotamers) 4.97–5.07
(m, 1H) 5.14–5.35 (m, 2H) 6.28 (d, J = 10.99 Hz, 1H) 6.99 (dd, J = 8.24, 3.97 Hz,
1H) 7.29–7.56 (m, 5H); MS (ES), 453 (MꢀH)ꢀ 18: 1H NMR (300 MHz,
chloroform-d) showed a mixture of rotamers doubling most signals d ppm
3.04–3.27 (m, 2H) 3.57 and 3.61 (2s, 3H, OCH3, rotamers) 4.40–4.56 (2 d,
J = 16.94 Hz, 1H, rotamers) 4.65–4.75 (2 d, J = 16.94 Hz, 1H, rotamers) 4.97–
5.21 (m, 3H) 6.77–7.01 (m, 2H), 7.25–7.43 (m, 5H); 19: 1H NMR (500 MHz,
chloroform-d) showed a mixture of rotamers doubling most signals d ppm
3.22–3.44 (m, 2H), 3.57 and 3.64 (2s, 3H, OCH3, rotamers) 4.70 (d, J = 17.0 Hz,
1H) 4.93 (d, J = 17.0 Hz, 1H) 5.09–5.30 (m, 3H), 7.30–7.45 (m, 6H), 7.93–8.11
(m, 2H); MS (ES), 393 (M+Na)+.
10. Degnan, A. P.; Chaturvedula, P. V.; Conway, C. M.; Cook, D. A.; Davis, C. D.;
Denton, R.; Han, X.; Macci, R.; Mathais, N. R.; Moench, P.; Pin, S. S.; Ren, S. X.;
Schartman, R.; Signor, L. J.; Thalody, G.; Widmann, K. A.; Xu, C.; Macor, J. E.;
Dubowchik, G. M. J. Med. Chem. 2008, 51, 4858–4861.
11. (a) Heck, R. F. Org. React. 1982, 27, 345; (b) Crisp, G. T. Chem. Soc. Rev. 1998, 27,
427; (c) Jeffery, T. J. Chem. Commun. 1984, 1287.
12. For exceptionally mild catalysts for Heck reactions, see: Littke, A. F.; Fu, G. C. J.
Am. Chem. Soc. 2001, 123, 6989.
13. Burk, M. J.; Feaster, J. E.; Nugent, W. A.; Harlow, R. L. J. Am. Chem. Soc. 1993, 115,
10125.
14. Chaturvedula, P. V.; Mercer, S. E.; Fang, H. Constrained compounds as CGRP-
receptor antagonists US Patent 7, 384, 930; Chem. Abstr. 2006, 145, 419134.; (b)
Wallace, M. D.; McGuire, M. A.; Yu, M. S.; Goldfinger, L.; Liu, L.; Dai, W.;
Shilcrat, S. Org. Process Res. Dev. 2004, 8, 738; (c) Chan, C.; Heid, R.; Zheng, S.;
Guo, J.; Zhou, B.; Furuuchi, T.; Danishefsky, S. J. J. Am. Chem. Soc. 2005, 127,
4596; (d) Zheng, S.; Chan, C.; Furuuchi, T.; Wright, B. J. D.; Zhou, B.;
Danishefsky, S. J. Angew. Chem., Int. Ed. 2006, 45, 1754; (e) Prasad, C. V. C.;
Mercer, S. E.; Dubowchik, G. M.; Macor, J. E. Tetrahedron Lett. 2007, 48, 2661; (f)
Han, X.; Jiang, X.; Civiello, R. L.; Degnan, A. P.; Chaturvedula, P. V.; Macor, J. E.;
Dubowchik, G. M. J. Org. Chem. 2009, 74, 3993.
15. Hubig, S. M.; Jung, W.; Kochi, J. K. J. Org. Chem. 1994, 59, 6233.
16. (a) James L. Marshall, ‘Carbon–Carbon and Carbon–Proton NMR Couplings:
Application to Organic Stereochemistry and Conformational Analysis’ by
Veriag Chemie International, 1983. (b) NMR experiments were performed on
a Bruker 500 MHz spectrometer equipped with a TXI cryo probe. (c) The
observed H–C three-bond coupling constant (3J Hvinyl, Cmethyl
=
acetate carbonyl
10.9 Hz) for the (E) isomer of 5f is consistent with the trans-3JCOOR, H coupling.