S. Yin et al. / Dyes and Pigments 88 (2011) 372e377
377
transfer with nearly 100% efficiency. The excitation spectrum of
poly3 consists of a long wavelength band corresponding to that
found in 4 and 5 and an extra band with a maximum around
430 nm. The latter band which is also observed in the excitation
spectrum of poly2 corresponds to the absorption bands of the poly
(p-phenylene ethynylene) linker in poly2 and poly3. From the
emission spectrum it is clear that the emission of poly3 at 613 nm is
only for 50% due to the linker. Furthermore, the maximum of the
band at 474 nm is about ten times more intense than that due to the
BODIPY chromophore. This means that in the excitation spectrum
of the emission of the BODIPY chromophore the band due to the
linker is five times more intense than that of the BODIPY chro-
mophore while in the absorption spectrum it is about twenty times
more intense. The limited excitation transfer in poly3 comes as no
surprise because the edge to edge distance of chromophores in the
center of the PPE linker to the BODIPY is more than 10 nm in poly3,
a value clearly exceeding generally accepted values for the Förster
distance (4e6 nm) for completely allowed transitions [33]. This
suggests that changing the conditions of the polymerization in
order to reduce the length of the OPE linker by a factor of two
would be necessary to obtain efficient energy transfer.
thank the K.U.Leuven Research Fund through GOA 2004/2 and
BELSPO through IAP VI/27.
References
[1] Bunz UHF. Chem Rev 2000;100:1605.
[2] McQuade DT, Pullen AE, Swager TM. Chem Rev 2000;100:2537.
[3] Thomas SW, Joly GD, Swager TM. Chem Rev 2007;107:1339.
[4] Voskerician G, Weder C. Adv Polym Sci 2005;177:209.
ꢀ
[5] Breen CR, Tischler JR, Bulovic V, Swager TM. Adv Mater 2005;17:1981.
[6] Roy VAL, Zhi YG, Xu ZX, Yu SC, Chan PWH, Che CM. Adv Mater 2005;17:1258.
[7] Mwaura JK, Zhao X, Jiang H, Schanze KS, Reynolds JR. Chem Mater
2006;18:6109.
[8] Mwaura JK, Pinto MR, Witker D, Ananthakrishnan N, Schanze KS, Reynolds JR.
Langmuir 2005;21:10119.
[9] Loudet A, Burgess K. Chem Rev 2007;107:4891.
[10] Ulrich G, Ziessel R, Harriman A. Angew Chem Int Ed 2008;47:1184.
[11] Zeng L, Miller EW, Pralle A, Isacoff EY, Chang CJ. J Am Chem Soc 2006;128:10.
[12] Peng XJ, Du JJ, Fan JL, Wang JY, Wu YK, Zhao JZ, et al. J Am Chem Soc
2007;129:1500.
[13] Cheng TY, Xu YF, Zhang SY, Zhu WP, Qian XH, Duan LP. J Am Chem Soc
2008;130:16160.
[14] Lee HY, Bae DR, Park JC, Song HJ, Han WS, Jung JH. Angew Chem Int Ed
2009;48:1239.
[15] Tian MZ, Peng XJ, Feng F, Meng SM, Fan JL, Sun SG. Dyes Pigm 2009;81:58.
[16] Wan CW, Burghart A, Chen J, Bergström F, Johansson LBA, Wolford MF, et al.
Chem Eur J 2003;9:4430.
4. Conclusion
[17] Harriman A, Izzet G, Ziessel R. J Am Chem Soc 2006;128:10868.
[18] Liu JY, Ermilov EA, Röder B, Ng DKP. Chem Commun; 2009:1517.
[19] Yee M, Fas SC, Stohlmeyer MM, Wandless TJ, Cimprich KA. J Biol Chem
2005;280:29053.
BODIPY chromophores have been successfully introduced at the
ends of PPE by a palladium-catalyzed cross-coupling reaction. The
absorption and emission spectra show that linking BODIPY to the
PPE linker does not perturb the spectroscopic properties of both the
linker and BODIPY. The similar fluorescence quantum yields
obtained upon direct excitation of the BODIPY chromophore in
model compound 5 and in polymer poly3 suggests that linking the
chromophores does not induce significant quenching, e.g. by elec-
tron transfer. Although the PPE linker was shown to act as antenna
in both the model compound 5 and the polymer poly3, excitation
transfer only occurs with limited yield in poly3.
[20] Yogo T, Urano Y, Ishitsuka Y, Maniwa F, Nagano T.
2005;127:12162.
J
Am Chem Soc
[21] Nagai A, Miyake J, Kokado K, Nagata Y, Chujo Y.
2008;130:15276.
J Am Chem Soc
[22] Zhu M, Jiang L, Yuan MJ, Liu XF, Ouyang CB, Zheng HY, et al. J Polym Sci Part A
Polym Chem 2008;46:7401.
[23] Meng G, Velayudham S, Smith A, Luck R, Liu HY. Macromolecules
2009;42:1995.
[24] Donuru VR, Vehesna GK, Velayudham S, Meng G, Liu HY. J Polym Sci Part A
Polym Chem 2009;47:5354.
[25] Nagai A, Chujo Y. Macromolecules 2010;43:193.
[26] Shirai Y, Zhao YM, Cheng L, Tour JM. Org Lett 2004;6:2129.
[27] Yin SC, Leen V, Van Snick S, Boens N, Dehaen W. Chem Commun 2010;
46:6329.
[28] Nesterov EE, Zhu ZG, Swager TM. J Am Chem Soc 2005;127:10083.
[29] Xia YQ, Mao J, Lv X, Che YS. Polym Bull 2009;63:37.
[30] Qin WW, Leen V, Rohand T, Dehaen W, Dedecker P, Van der Auweraer M, et al.
J Phys Chem A 2009;113:439.
[31] Harriman A, Mallon LJ, Elliot KJ, Haefele A, Ulrich G, Ziessel R. J Am Chem Soc
2009;131:13375.
[32] Huang WY, Gao W, Kwei TK, Okamoto Y. Macromolecules 2001;34:1570.
[33] Turro N, Ramamurthy V, Scaiano JC. Modern molecular photochemistry of
organic molecules. Mill Valley, CA, USA: University Science Books; 2010.
Acknowledgements
The ‘Instituut voor de aanmoediging van innovatie door
Wetenschap en Technologie in Vlaanderen’ (IWT) is acknowledged
for a fellowship to VL. We thank the ‘Fonds voor Wetenschappelijk
Onderzoek’ (FWO), the ‘Ministerie voor Wetenschapsbeleid’ and
the K.U.Leuven for continuing financial support. The authors also