3361–3373; (h) D. Liu, L. Zhang, Q. Wang, C. Da, Z. Xin, R. Wang,
M. C. K. Choi and A. S. C. Chan, Org. Lett., 2001, 3, 2733–2735; (i) C.
Cimarelli, A. Mazzanti, G. Palmieri and E. Volpini, J. Org. Chem.,
2001, 66, 4759–4765; (j) Y. Wang, X. Li and K. Ding, Tetrahedron:
Asymmetry, 2002, 13, 1291–1297; (k) J. Ji, L. Qiu, C. W. Yip and
A. S. C. Chan, J. Org. Chem., 2003, 68, 1589–1590; (l) J. Lu, X.
Xu, C. Wang, J. He, Y. Hu and H. Hu, Tetrahedron Lett., 2002, 43,
8367–8369; (m) J. Lu, X. Xu, S. Wang, C. Wang, Y. Hu and H. Hu,
J. Chem. Soc., Perkin Trans. 1, 2002, 2900–2903; (n) X. Xu, J. Lu, Y.
Dong and Y. Hu, Synlett., 2004, 122–124; (o) X. Xu, J. Lu, Y. Dong,
R. Li, Z. Ge and Y. Hu, Tetrahedron: Asymmetry, 2004, 15, 475–479;
(p) Y. Dong, J. Sun, X. Wang, X. Xu, L. Cao and Y. Hu, Tetrahedron:
Asymmetry, 2004, 15, 1667–1672; (q) X. Wang, Y. Dong, J. Sun, X.
Xu, R. Li and Y. Hu, J. Org. Chem., 2005, 70, 1897–1900.
structure was then assigned to the diastereoisomeric derivatives
obtained by reaction of the enantiomers of 1-(a-aminobenzyl)-2-
naphthol (1) with racemic aldehydes resolved by Betti.
19 (a) M. Betti, Gazz. Chim. Ital., 1903, 33-I, 17; M. Betti, J. Chem. Soc.,
1903, 84-I, 510; (b) M. Betti and V. Foa, Gazz. Chim. Ital., 1903, 33-I,
27; M. Betti and V. Foa, J. Chem. Soc., 1903, 84-I, 511.
20 (a) M. Betti, Atti Acc. Lincei, 1930, 11, 587–593 (Chem. Abstr. 1930,
24, 4473); (b) M. Betti and P. Pratesi, Atti Acc. Lincei, 1930, 11, 646–
649 (Chem. Abstr. 1930, 24, 3771); (c) M. Betti and P. Pratesi, Ber.,
1930, 63B, 874–5; (d) M. Betti and P. Pratesi, Biochem. Z., 1934, 274,
1–3 (Chem. Abstr. 1935, 29, 733h).
21 H. E. Smith and N. E. Cooper, J. Org. Chem., 1970, 35, 2212–
2215.
22 I. Szatmari, T. A. Martinek, L. Lazar and F. Fu¨lo¨p, Tetrahedron,
2003, 59, 2877.
10 For a very recent, excellent and authoritative review on Betti’s base
and its history, see: C. Cardellicchio, M. A. M. Capozzi and F. Naso,
Tetrahedron: Asymmetry, 2010, 21, 507–517.
23 CHIRALPAKꢀR AD-H, n-hexane/i-PrOH
=
95/5 or 90/10,
1 ml min-1, 230 nm, 20 ◦C.
11 Y. Dong, R. Li, J. Lu, X. Xu, X. Wang and Y. Hu, J. Org. Chem.,
2005, 70, 8617.
24 For a discussion on the use of “% ee” and “% de” as expressions of
stereoisomer composition, see: R. E. Gawley, J. Org. Chem., 2006,
71, 2411.
25 A variety of carboxylic acids with different pKa have been used in
different concentrations in methanol. Among them we chose acetic
acid in the reported concentrations in methanol to have a satisfying
reaction rate avoiding a concomitant decomposition.
26 Renin is an important enzyme at the beginning of the renin
angiotensin system (RAS), one of the key regulators of blood
pressure. Efficient renin inhibitors decrease the plasma renin activity
and reduce the production of angiotensin I from agiotensinogen.
27 The team of scientists (Novartis Institutes of Biomedical Research,
NIBR) who invented aliskiren have been named Heroes of Chemistry
2009; Chem. Eng. News September 21, 2009, 46.
28 (a) H. Ru¨eger, S. Stutz, R. Go¨schke, F. Spindler and J. Maibaum,
Tetrahedron Lett., 2000, 41, 10085–10089; (b) D. A. Sandham, R. J.
Taylor, J. S. Carey and A. Fa¨ssler, Tetrahedron Lett., 2000, 41,
10091–10094; (c) A. Dondoni, G. De Lathauwer and D. Perrone,
Tetrahedron Lett., 2001, 42, 4819–4823; (d) R. R. Go¨schke, S. Stutz,
W. Heinzelmann and J. Maibaum, Helv. Chim. Acta, 2003, 86, 2848–
2870; (e) H. Dong, Z.-L. Zhang, J.-H. Huang, R. Ma, S.-H. Chen
and G. Li, Tetrahedron Lett., 2005, 46, 6337–6340; (f) K. B. Lindsay
and T. Skrydstrup, J. Org. Chem., 2006, 71, 4766–4777.
12 The expressions “real world targets” and “real-life substrates” are
referred to those products and intermediates that play a key role in the
synthesis of chemicals currently exploited to solve some important
problem of present days, by which there is a great interest, and
therefore, an actual challenge to devise a more practical, efficient and
economically convenient methodology to prepare them according to
the green chemistry rules too.
13 (a) Racemic HelionalꢀR (IFF), also named TropionalꢀR , is a fragrance
produced industrially via a cross-aldol condensation of piperonal and
propanal followed by catalytic hydrogenation (K. Bauer, D. Garbe,
H. Surburg, Common Fragrance and Flavor Materials, Wiley-VCH,
1997) with an annual production of about 300–350 tons; (b) Enders
and Backes have published the first EPC synthesis of both enan-
tiomers (ee = 90%) through the SAMP/RAMP hydrazone-alkylation
strategy (D. Enders and M. Backes, Tetrahedron: Asymmetry, 2004,
15, 1813–1817) and described the olfactory evaluations and odour
threshold values of each enantiomer.
14 (a) Racemic LilialꢀR (Givaudan) is a lily-of-the-valley odorant and
a precursor of the fungicide Fenpropimorph (W. Himmele, F.-
Kohlmann, W. Herberle, German Patent, DE 2822326). Similarly to
HelionalꢀR it is produced industrially via a cross-aldol condensation of
4-tert-butyl-benzaldehyde and propanal followed by hydrogenation
(M. S. Carpenter, W. M. Jr Easter, U.S. Patent, 2,875,131, 1959,
Givaudan); (b) The EPC synthesis of both enantiomers of Lilial
has been performed exploiting the SAMP/RAMP methodology
for enantioselective alkylation reactions (D. Enders and H. Dyker,
Liebigs Ann. Chem., 1990, 11, 1107); (c) Through the enantios-
elective hydrogenation of the corresponding unsaturated alcohol
catalyzed by an iridium complex followed by oxidation (A. Lightfoot,
P. Schinder and A. Pfaltz, Angew. Chem., Int. Ed., 1998, 37,
2897); (d) The hydrogenation of the corresponding unsaturated
acid with a ruthenium complex incorporating (R)-BINAP followed
by reduction (T. Yamamoto, in Current Topics in Flavours and
FragrancesK. A. D. Swift, ed., Kluver Academic, Dordrech, The
Nederlands1999, pp 33–38).
29 (a) H.-U. Blaser, B. Pugin, F. Spindler and M. Thommen, Acc. Chem.
Res., 2007, 40, 1240–1250; (b) J. A. F. Boogers, U. Felfer, M. Koohaus,
L. Lefort, G. Steinbauer, A. H. M. de Vries and J. G. de Vries, Org.
Process Res. Dev., 2007, 11, 585–591; (c) J. G. de Vries and L. Lefort,
Chem.–Eur. J., 2006, 12, 4722–4734; (d) P. M. Jackson, I. C. Lennon
and M. E. Fox, US Patent 2009/0099358 A1, applicant Dow Global
Technologies Inc., 2009; WO 2007/123957 A2, 2007; (e) W. Chen,
F. Spindler and B. Pugin, WO 2007116081 A1, applicant Solvias
AG, 2007; (f) T. Strurm, W. Weissensteiner and F. Spindler, Adv.
Synth. Catal., 2003, 345, 160–164; (g) P. Herold and S. Stutz, WO
2002002500 A1, assigned to Speedel Pharma AG, 2002.
30 N. Andrusko, V. Andrusko, T. Thyrann, G. Ko¨nig and A. Bo¨rner,
Tetrahedron Lett., 2008, 49, 5980–5982.
31 M. Betti, Organic Syntheses, Wiley & Sons: New York, Coll. Vol. 1,
15 The fragrance Cyclamal was progressively substituted by the more
(1941), pp 381–383.
R
stable Lilialꢀ. Its preparation is very similar to those reported for
32 Y. Dong, R. Li, J. Lu, X. Xu, X. Wang and Y. Hu, J. Org. Chem.,
2005, 70, 8617–8620.
the other a-methyl hydrocinnamic aldehydes and, to the best of our
knowledge, no asymmetric synthesis of Cyclamal has been published.
16 (a) L. A. Saudan, Acc. Chem. Res., 2007, 40, 1309; (b) A. P. S. Narula,
Helv. Chim. Acta, 2004, 87, 1992; (c) S. Lamboley, C. Morel, J. Y. De
Saint Laumere, A. F. Boshung, N. G. J. Richards and B. M. Winter,
Helv. Chim. Acta, 2004, 87, 1767; (d) E. Brenna, C. Fuganti and S.
Serra, Tetrahedron: Asymmetry report N. 54, 2003, 14, 1; (e) G. Frater,
J. A. Bajgrowikz and P. Kraft, Tetrahedron, 1998, 54, 7633.
33 P. Herold and S. Stutz, PCT WO 02/02500 A1 for Speedel Pharma
AG.
34 13C NMR (100 MHz, C6D6) of (1S,3R,3S)-3e isomer d: 159.0, 154.2,
144.2, 134.6, 133.2, 131.1, 130.7, 130.0, 129.9, 129.5, 129.0, 127.9,
127.4, 124.1, 124.0, 120.5, 115.7, 114.8, 84.8, 55.4, 54.9, 51.5, 32.9,
28.5, 22.0, 20.8.
35 HPLC analysis (1S,3R,R)/(1S,3R,R)
= 96.4 (tR = 10.03) :
17 M. Betti, Organic Syntheses, Wiley & Sons: New York, 1941; Collect.
3.6 (tR = 8.42) ratio. The methanol–AcOH filtrate showed a
(1S,3R,R)/(1S,3R,R) = 64.8 : 29.8 ratio.
Vol. 1, pp 381–383.
18 M. Betti, Gazz. Chim. Ital., 1900, 30-II, 301–309; M. Betti, Gazz.
Chim. Ital., 1900, 30-II, 310–309At that time the structure as-
signments were based on a variety of tests specific for functional
groups. In particular, the positive response to the FeCl3 test for
phenol convinced the Author, perhaps a pupil of Ugo Schiff, to
prefer the structure of a Schiff base for the condensation product
that underwent hydrochloric acid hydrolysis, thus changing the
first assignment consisting into the 1,3-diphenyl-2,3-dihydro-1H-
naphtho[1,2-e][1,3]oxazine structure (see Scheme 2). The same iminic
36 Only the naphthoxazine 3f was completely soluble.
37 K. Kogami, O. Takahashi and J. Kumanotani, Bull. Chem. Soc. Jpn.,
1972, 45, 604–607.
38 A. Scrivanti, M. Bertoldini, V. Beghetto and U. Matteoli, Tetrahe-
dron, 2008, 64, 543–548.
ˇ
39 A. Avdagic´, M. Gelo-Pujic´ and V. Sunjic´, Synthesis, 1995, 1427–
1431.
40 M. Kinoshita, T. Miyake, Y. Arima, M. Oguma and H. Akita, Chem.
Pharm. Bull., 2008, 56, 118–123.
This journal is
The Royal Society of Chemistry 2010
Green Chem., 2010, 12, 1747–1757 | 1757
©