Page 7 of 8
Journal of the American Chemical Society
1
2
3
4
5
6
7
8
9
(16) In reference 14a Jacobi von Wangelin reported the coupling of chlorocyclohexane with 2-bromoanisole (63% yield) and bromobenzene (25% yield)
using iron catalysis and Mg as the terminal reductant.
(17) Biswas, S.; Weix, D. J. Mechanism and Selectivity in Nickel-Catalyzed Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides. J. Am. Chem.
Soc. 2013, 135, 16192–16197.
(18) For related studies, see: (a) Breitenfeld, J.; Ruiz, J.; Wodrich, M. D.; Hu, X. Bimetallic Oxidative Addition Involving Radical Intermediates in Nickel-
Catalyzed Alkyl-Alkyl Kumada Coupling Reactions. J. Am. Chem. Soc. 2013, 135, 12004–12012; (b) Schley, N. D.; Fu, G. C. Nickel-Catalyzed Negishi Aryla-
tions of Propargylic Bromides: A Mechanistic Investigation. J. Am. Chem. Soc. 2014, 136, 16588-16593; (c) Zhao, C.; Jia, X.; Wang, X.; Gong, H. Ni-Catalyzed
Reductive Coupling of Alkyl Acids with Unactivated Tertiary Alkyl and Glycosyl Halides. J. Am. Chem. Soc. 2014, 136, 17645-17651.
(19) For alternative mechanistic hypotheses for related reactions, see: (a) Lin, Q.; Diao, T. Mechanism of Ni-Catalyzed Reductive 1,2-
Dicarbofunctionalization of Alkenes. J. Am. Chem. Soc. 2019, 141, 17937-17948. (b) Gutierrez, O.; Tellis, J. C.; Primer, D. N.; Molander, G. A.; Kozlowski, M.
C. Nickel-Catalyzed Cross-Coupling of Photoredox-Generated Radicals: Uncovering a General Manifold for Stereoconvergence in Nickel-Catalyzed Cross-
Couplings. J. Am. Chem. Soc. 2015, 137, 4896-4899. (c) Mohadjer Beromi, M.; Brudvig, G. W.; Hazari, N.; Lant, H. M. C.; Mercado, B. Q. Synthesis and
Reactivity of Paramagnetic Nickel Polypyridyl Complexes Relevant to C(sp2)–C(sp3)Coupling Reactions. Angew. Chem., Int. Ed. 2019, 58, 6094-6098.
(20) (a) Hansen, E. C.; Pedro, D. J.; Wotal, A. C.; Gower, N. J.; Nelson, J. D.; Caron, S.; Weix, D. J. New ligands for nickel catalysis from diverse pharma-
ceutical heterocycle libraries. Nat. Chem. 2016, 8, 1126-1130; (b) Hansen, E. C.; Li, C.; Yang, S.; Pedro, D.; Weix, D. J. Coupling of Challenging Heteroaryl
Halides with Alkyl Halides via Nickel-Catalyzed Cross-Electrophile Coupling. J. Org. Chem. 2017, 82, 7085-7092.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(21) PyBCam (Order No. 902047) and PyBCamCN (Order No. 902063) are commercially available from Sigma-Aldrich.
(22) Johnson, K. A.; Biswas, S.; Weix, D. J. Cross-Electrophile Coupling of Vinyl Halides with Alkyl Halides. Chem.–Eur. J. 2016, 22, 7399–7402.
(23) Goldup, S. M.; Leigh, D. A.; McBurney, R. T.; McGonigal, P. R.; Plant, A. Ligand-assisted nickel-catalysed sp3–sp3 homocoupling of unactivated alkyl
bromides and its application to the active template synthesis of rotaxanes. Chem. Sci. 2010, 383-386.
(24) (a) Anderson, T. J.; Jones, G. D.; Vicic, D. A. Evidence for a NiI Active Species in the Catalytic Cross-Coupling of Alkyl Electrophiles. J. Am. Chem.
Soc. 2004, 126, 8100-8101. (b) Jones, G. D.; Martin, J.; McFarland, C.; Allen, O.; Hall, R.; Haley, A.; Brandon, R.; Konovalova, T.; Desrochers, P.; Pulay, P.;
Vicic, D. Ligand Redox Effects in the Synthesis, Electronic Structure, and Reactivity of an Alkyl–Alkyl Cross-Coupling Catalyst. J. Am. Chem. Soc. 2006, 128,
13175-13183.
(25) See the Supporting Information for extensive ligand reactivity and selectivity data (Figure S1) as well as additional optimization data (Figures S3, S4,
S6).
(26) While Csp3–Csp2 bond-forming Negishi reactions with aryl iodides and bromides have been shown to tolerate O-H and N-H bonds in many cases,
fewer examples exist for couplings with C-Cl bonds. (a) Leroux, M.; Vorherr, T.; Lewis, I.; Schaefer, M.; Koch, G.; Karaghiosoff, K.; Knochel, P. Late‐Stage
Functionalization of Peptides and Cyclopeptides Using Organozinc Reagents. Angew. Chem., Int. Ed. 2019, 58, 8231-8234. (b) Pompeo, M.; Froese, R. D. J.;
Hadei, N.; Organ, M. G. Pd‐PEPPSI‐IPentCl: A Highly Effective Catalyst for the Selective Cross‐Coupling of Secondary Organozinc Reagents. Angew. Chem.,
Int. Ed. 2012, 51, 11354-11357.
(27) Bordwell, F. G.; Hughes, D. L. Thiol acidities and thiolate ion reactivities toward butyl chloride in dimethyl sulfoxide solution. The question of curva-
ture in Brøensted plots. J. Org. Chem. 1982, 47, 3224-3232.
(28) Nickel is known to catalyze C-S bond formation of aryl thiols with aryl chlorides. Arylzinc reagents and zinc powder have been used as promoters. See:
(a) Jones, K. D.; Power, D. J.; Bierer, D.; Gericke, K. M.; Stewart, S. G. Nickel Phosphite/Phosphine-Catalyzed C–S Cross-Coupling of Aryl Chlorides and
Thiols. Org. Lett. 2018, 20, 208-211. (b) Gehrtz, P. H.; Geiger, V.; Schmidt, T.; Sršan, L.; Fleischer, I. Cross-Coupling of Chloro(hetero)arenes with Thiolates
Employing a Ni(0)-Precatalyst. Org. Lett. 2019, 21, 50-55. (c) Gogoi, P.; Hazarika, S.; Sarma, M. J.; Sarma, K.; Barman, P. Nickel–Schiff base complex cata-
lyzed C–S cross-coupling of thiols with organic chlorides. Tetrahedron 2014, 70, 7484-7489.
(29) Generally, these compounds are made by hydrosilylation of olefins (with HSiCl3 or HSi(OMe)3) or Grignard reactions (with tetrachlorosilane). Hy-
drosilylation to form trimethoxysilanes requires (MeO)3SiH, which can form pyrophoric SiH4. A workaround is to use HSiCl3, but this is also prone to rapid
decomposition. (a) Buslov, I.; Song, F.; Hu, X. An Easily Accessed Nickel Nanoparticle Catalyst for Alkene Hydrosilylation with Tertiary Silanes. Angew.
Chem., Int. Ed. 2016, 55, 12295-12299. (b) Katoh, K.; Ito, S.; Wada, Y.; Higashi, E.; Suzuki, Y.; Kubota, K.; Nakano, K.; Wada, Y. Investigation of thermal
hazard during the hydrosilylation of 1,6-divinyl(perfluorohexane) with trichlorosilane. J. Chem. Thermodyn. 2011, 43, 1229-1234.
(30) The Kumada coupling of trimethoxysilanes is reported to be impractical, but triethoxysilanes can be cross-coupled. See: Brondani, D. J.; Corriu, R. J.
P.; El Ayoubi, S.; Moreau, J. J. E.; Wong Chi Man, M. Polyfunctional carbosilanes and organosilicon compounds. Synthesis via grignard reactions. Tetrahedron
Lett. 1993, 34, 2111-2114.
(31) (a) Sagiv, J. Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces. J. Am. Chem. Soc.
1980, 102, 92-98. (b) Wasserman, S. R.; Tao, Y. T.; Whitesides, G. M. Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltri-
chlorosilanes on silicon substrates. Langmuir 1989, 5, 1074-1087. (c) Ulman, A. Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 1996,
96, 1533-1554. (d) Haensch, C.; Hoeppener, S.; Schubert, U. S. Chemical modification of self-assembled silane based monolayers by surface reactions. Chem.
Soc. Rev. 2010, 39, 2323-2334.
(32) See Supporting Information for a detailed procedure. For a recent publication on scale-up of related chemistry in flow, see: Watanabe, E.; Chen, Y.;
May, O.; Ley, S. V. A Practical Method for Continuous Production of sp3-Rich Compounds from (Hetero)Aryl Halides and Redox-Active Esters. Chem.–Eur.
J. 2020, 26, 186-191.
(33) Huang, L.; Ackerman, L. K. G.; Kang, K.; Parsons, A. M.; Weix, D. J. LiCl-Accelerated Multimetallic Cross-Coupling of Aryl Chlorides with Aryl Tri-
flates. J. Am. Chem. Soc. 2019, 141, 10978-10983.
(34) (a) Krasovskiy, A.; Malakhov, V.; Gavryushin, A.; Knochel, P. Efficient Synthesis of Functionalized Organozinc Compounds by the Direct Insertion of
Zinc into Organic Iodides and Bromides. Angew. Chem., Int. Ed. 2006, 45, 6040−6044. (b) Koszinowski, K.; Böhrer, P. Formation of Organozincate Anions in
LiCl-Mediated Zinc Insertion Reactions. Organometallics 2009, 28, 771−779. (c) Feng, C.; Cunningham, D. W.; Easter, Q. T.; Blum, S. A. Role of LiCl in
Generating Soluble Organozinc Reagents. J. Am. Chem. Soc. 2016, 138, 11156−11159. (d) Jess, K.; Kitagawa, K.; Tagawa, T. K. S.; Blum, S. A. Microscopy
Reveals: Impact of Lithium Salts on Elementary Steps Predicts Organozinc Reagent Synthesis and Structure. J. Am. Chem. Soc. 2019, 141, 9879−9884.
(35) (a) Anderson, T. J.; Vicic, D. A. Direct Observation of Noninnocent Reactivity of ZnBr2 with Alkyl Halide Complexes of Nickel. Organometallics
2004, 23, 623-625. (b) Koszinowski, K.; Böhrer, P. Formation of Organozincate Anions in LiCl-Mediated Zinc Insertion Reactions. Organometallics 2009, 28,
771-779. (c) Achonduh, G. T.; Hadei, N.; Valente, C.; Avola, S.; O'Brien, C. J.; Organ, M. G. On the role of additives in alkyl-alkyl Negishi cross-couplings.
7
ACS Paragon Plus Environment