Organic & Biomolecular Chemistry
Paper
Fundamental Research Funds for the Central Universities
(XK1802-6 to Z. Y. and J. X.; No. 12060093063 to Z. Y.).
J. Chem. Soc., Chem. Commun., 1988, 454; (c) C. H. Chen,
G. A. Reynolds and B. C. Cossar, J. Org. Chem., 1981, 46,
2752; (d) M. S. J. Briggs, M. Helliwell, D. Moorcroft and
E. J. Thomas, J. Chem. Soc., Perkin Trans. 1, 1992, 2223;
(e) S. M. Jeffery, A. G. Sutherland, S. M. Pyke, A. K. Powell
and R. J. K. Taylor, J. Chem. Soc., Perkin Trans. 1, 1993,
2317; (f) V. K. Kansal and R. J. K. Taylor, J. Chem. Soc.,
Perkin Trans. 1, 1984, 703; (g) C. H. Chen, G. A. Reynolds
and J. A. Van Allan, J. Org. Chem., 1977, 42, 2777;
(h) C. H. Chen and G. A. Reynolds, J. Org. Chem., 1979, 44,
3144; (i) D. E. Ward, Y. Gai and Y. Lai, Synlett, 1996, 261.
Notes and references
1 (a) H.-S. Yeom and S. Shin, Acc. Chem. Res., 2014, 47, 966;
(b) M. P. Doyle, M. A. McKervey and T. Ye, Modern Catalytic
Methods for Organic Synthesis with Diazo Compounds, Wiley,
New York, NY, 1998; (c) T. Ye and M. A. McKervey, Chem. Rev.,
1994, 94, 1091; (d) Z. Zhang and J. Wang, Tetrahedron, 2008, 64,
6577; (e) A. Ford, H. Miel, A. Ring, C. N. Slattery, A. R. Maguire 13 (a) G. A. Reynolds, C. H. Chen and J. A. Van Allan, J. Org.
and M. A. McKervey, Chem. Rev., 2015, 115, 9981.
Chem., 1979, 44, 4456; (b) S. Kumaresan, M. V. Krishna and
S. R. Ramadas, Phosphorus Sulfur Relat. Elem., 1987, 31, 43;
(c) D. E. Ward and T. E. Nixey, Tetrahedron Lett., 1993, 34,
947; (d) M. Pieroni, M. Dimovska, J. P. Brincat, S. Sabatini,
E. Carosati, S. Massari, G. W. Kaatz and A. Fravolini, J. Med.
Chem., 2010, 53, 4466; (e) K. Yamamoto, S. Yamazaki,
I. Murata and Y. Fukazawa, J. Org. Chem., 1987, 52, 5239.
2 (a) B. Chattopadhyay and V. Gevorgyan, Angew. Chem., Int.
Ed., 2012, 51, 862; (b) A. V. Gulevich and V. Gevorgyan,
Angew. Chem., Int. Ed., 2013, 52, 1371; (c) H. M. L. Davies
and J. S. Alford, Chem. Soc. Rev., 2014, 43, 5151;
(d) Y. Jiang, R. Sun, X.-Y. Tang and M. Shi, Chem. – Eur. J.,
2016, 22, 17910; (e) E. Aguilar and J. Santamaria, Org.
Chem. Front., 2019, 6, 1513; (f) X. H. Tian, L. N. Song, 14 B. Zhou, Q. Wu, Z. Dong, J. Xu and Z. Yang, Org. Lett.,
A. Hashmi and K. Stephen, Chem. – Eur. J., 2020, 26, 3197. 2019, 21, 3594.
3 (a) D. Kurandina and V. Gevorgyan, Org. Lett., 2016, 18, 15 (a) V. Pirenne, B. Muriel and J. Waser, Chem. Rev., 2021,
1804; (b) For a recent review, see: Y. Shafran, T. Glukhareva,
W. Dehaen and V. Bakulev, Adv. Heterocycl. Chem., 2018,
126, 109.
121(1), 227; (b) M. Meazza, H. Guo and R. Rios, Org.
Biomol. Chem., 2017, 15, 2479.
16 K. Lv and X. Bao, Org. Chem. Front., 2021, 8, 310–318.
4 (a) J.-Y. Son, J. Kim, S. H. Han, S. H. Kim and P. H. Lee, 17 J. Tsuji and K. Ohno, Tetrahedron Lett., 1965, 6, 3969.
Org. Lett., 2016, 18, 5408; (b) B. Seo, Y. G. Kim and 18 Three-membered intermediates formed by [2 + 1] cycload-
P. H. Lee, Org. Lett., 2016, 18, 5050; (c) B. Seo, H. Kim,
Y. G. Kim, Y. Baek, K. Um and P. H. Lee, J. Org. Chem.,
2017, 82, 10574; (d) J. E. Kim, J. Lee, H. Yun, Y. Baek and
P. H. Lee, J. Org. Chem., 2017, 82, 1437.
5 W. Liang, K. Nakajima and Y. Nishibayashi, Eur. J. Org.
Chem., 2020, 3879.
ditions of carbenes were proposed in the previous works by
Gevorgyan, Lee, and Nakajima and Nishibayashi (ref. 3a,
4a,b, and 5); thus one may also consider an epoxide inter-
mediate in this work. However, complex and obscure evol-
ution (especially the H migration) of an imagined epoxide
to compound 3 prevented us from considering such a poss-
ible mechanism. In addition, we also tried to verify the
mechanism experimentally, designing the synthesis of
such an intermediate by Rh-catalyzed epoxide formation
from PhC(O)C(N2)CO2Et and 2l and subsequent thionation
of benzoyl with the Lawson reagent. However, the first step
could not be realized, although various conditions were
tried.
6 S. Chuprakov, F. W. Hwang and V. Gevorgyan, Angew.
Chem., Int. Ed., 2007, 46, 4757.
7 (a) L. V. R. Reddy, V. Kumar, R. Sagar and A. K. Shaw,
Chem. Rev., 2013, 113, 3605; (b) V. Marcos and J. Alemán,
Chem. Soc. Rev., 2016, 45, 6812; (c) N. A. Keiko and
N. V. Vchislo, Asian J. Org. Chem., 2016, 5, 1169;
(d) Z. Wang, Molecules, 2019, 24, 3412.
8 M. E. Alonso, M. d. C. Garcia and A. W. Chitty, J. Org. 19 A. Rosiak, R. M. Müller and J. Christoffers, Monatsh. Chem.,
Chem., 1985, 50, 3445. 2007, 138, 13.
9 T. Miura, T. Tanaka, K. Hiraga, S. G. Stewart and 20 (a) K. G. M. Kou, D. N. Le and V. M. Dong, J. Am. Chem.
M. Murakami, J. Am. Chem. Soc., 2013, 135, 13652.
10 (a) Y. Chen, H. Qi, N. Chen, D. Ren, J. Xu and Z. Yang,
J. Org. Chem., 2019, 84, 9044; (b) D. Fu, J. Dong, H. Du and
Soc., 2014, 136, 9471; (b) S. K. Murphy, A. Bruch and
V. M. Dong, Chem. Sci., 2015, 6, 174; (c) R. Guo and
G. Zhang, J. Am. Chem. Soc., 2017, 139, 12891.
J. Xu, J. Org. Chem., 2020, 85, 2752; (c) J. Dong, H. Du and 21 For a mechanism for Rh-catalysed decarbonylation, see:
J. Xu, J. Org. Chem., 2019, 84, 10724; (d) Z. Yang, W. Xu,
Q. Wu and J. Xu, J. Org. Chem., 2016, 81, 3051.
P. Fristrup, M. Kreis, A. Palmelund, P.-O. Norrby and
R. Madsen, J. Am. Chem. Soc., 2008, 130, 5206.
11 (a) Z. Yang and J. Xu, Chem. Commun., 2014, 50, 3616; 22 (a) G. L. Moxham, H. Randell-Sly, S. K. Brayshaw,
(b) P. Huang, Z. Yang and J. Xu, Tetrahedron, 2017, 73,
3255; (c) W. He, J. Zhuang, Z. Yang and J. Xu, Org. Biomol.
Chem., 2017, 15, 5541; (d) W. He, J. Zhuang, H. Du, Z. Yang
and J. Xu, Org. Biomol. Chem., 2017, 15, 9424.
A. S. Weller and M. C. Willis, Chem. – Eur. J., 2008, 14,
8383; (b) Z. Shen, P. K. Dornan, H. A. Khan, T. K. Woo and
V. M. Dong, J. Am. Chem. Soc., 2009, 131, 1077;
(c) A. B. Chaplin, J. F. Hooper, A. S. Weller and M. C. Willis,
J. Am. Chem. Soc., 2012, 134, 4885; (d) I. Pernik,
J. F. Hooper, A. B. Chaplin, A. S. Weller and M. C. Willis,
12 (a) K. Nakasuji, M. Nakatsuka and I. Murata, J. Chem. Soc.,
Chem. Commun., 1981, 1143; (b) G. Casy and R. J. K. Taylor,
This journal is © The Royal Society of Chemistry 2021
Org. Biomol. Chem., 2021, 19, 3173–3180 | 3179