Organic Letters
Letter
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
ETH Zurich is gratefully acknowledged for generous support
̈
through grant ETH-18 09-1. We thank Dr. N. Trapp and M.
Solar of the SMoCC (Small Molecule Crystallography Center)
facilities at ETH Zurich for X-ray crystallographic analysis and
̈
Dr. M.-O. Ebert, R. Arnold, S. Burkhardt, and R. Frankenstein
of the NMR Service at ETH Zurich. H.W. acknowledges the
̈
Stipendienfonds Schweizerische Chemische Industrie (SSCI).
REFERENCES
■
(1) (a) Jahn, U.; Galano, J.-M.; Durand, T. Angew. Chem., Int. Ed.
2008, 47, 5894. (b) Bochkov, V. N.; Oskolkova, O. V.; Birukov, K. G.;
Figure 5. Comparison of the activity of 2, 20, 21, 22, 23, and 24 in
inhibiting secretion of the proinflammatory cytokine IL-6.
Levonen, A.-L.; Binder, C. J.; Stockl, J. Antioxid. Redox Signaling 2010,
12, 1009.
̈
(2) (a) Imai, Y.; et al. Cell 2008, 133, 235. (b) Stewart, C. R.; et al.
Nat. Immunol. 2010, 11, 155. (c) Seimon, T. A.; et al. Cell Metab.
2010, 12, 467.
(3) (a) Leitinger, N.; et al. Proc. Natl. Acad. Sci. U. S. A. 1999, 96,
12010. (b) Bochkov, V. N.; Kadl, A.; Huber, J.; Gruber, F.; Binder, B.
latter displayed similar activity to the parent lactone 2.
Homologated lactones 22 and 23 were less active than their
C20 analogue 2, and the olefin diastereomer of the α,β-
unsaturated exocyclic enone (24) displayed decrease in
potency. In addition to the experiments described above, we
also investigated exocyclic enaminones as analogues. However,
no perceivable anti-inflammatory activity was observed (see the
In summary, we have described the convergent synthesis of
anti-inflammatory epoxyisoprostane analogues derived from
lactone 2 and analyzed their effect on the secretion of the
proinflammatory cytokine IL-6. We demonstrated that lactam 3
retained the high anti-inflammatory activity, and diastereomeric
lactam 12, sultam 13, ketone 15, as well as γ-lactam 21
displayed comparable activity. The study also highlighted the
necessity of the side-chain allylic alcohol for activity. Further
modifications and study of this intriguing class of biomolecules
are the subject of ongoing research in our laboratory and will be
reported as they become available.
R.; Leitinger, N. Nature 2002, 419, 77. (c) Bluml, S.; et al. J. Immunol.
̈
2005, 175, 501. (d) Knapp, S.; Matt, U.; Leitinger, N.; van der Poll, T.
J. Immunol. 2007, 178, 993.
(4) (a) Egger, J.; Bretscher, P.; Freigang, S.; Kopf, M.; Carreira, E. M.
Angew. Chem., Int. Ed. 2013, 52, 5382. (b) PECPC = 1-palmitoyl-2-
(5,6-epoxycyclopentenone)-sn-glycero-3-phosphorylcholine.
(5) (a) Egger, J.; Bretscher, P.; Freigang, S.; Kopf, M.; Carreira, E. M.
J. Am. Chem. Soc. 2014, 136, 17382. (b) Bretscher, P.; Egger, J.;
Shamshiev, A.; Trotzmuller, M.; Kofeler, H.; Carreira, E. M.; Kopf, M.;
̈
̈
̈
Freigang, S. EMBO Mol. Med. 2015, 7, 593.
(6) Testa, B.; Mayer, J. M. Hydrolysis in Drug and Prodrug
Metabolism: Chemistry, Biochemistry and Enzymology; Verlag Helvetica
Chimica Acta: Zurich, 2003; pp 163−164.
̈
(7) Buesking, W. A.; Baguley, T. D.; Ellman, J. A. Org. Lett. 2011, 13,
964.
(8) The diastereomeric ratio was determined by 1H NMR
spectroscopy of the unpurified reaction mixture.
(9) Chen, W.; Ren, J.; Wang, M.; Dang, L.; Shen, X.; Yang, X.;
Zhang, H. Chem. Commun. 2014, 50, 6259.
(10) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
(11) The relative configuration of the amide and alcohol stereogenic
centers in 14 is anti; however, we have not been able to establish their
relationship to the γ-stereogenic center in the cyclopentenone. This
also holds for the stereogenic center in cyclohexanone 15.
ASSOCIATED CONTENT
* Supporting Information
The Supporting Information is available free of charge on the
■
S
Experimental procedures and characterization data for all
Accession Codes
lographic data for this paper. These data can be obtained free of
Cambridge Crystallographic Data Centre, 12 Union Road,
Cambridge CB2 1EZ, UK; fax: +44 1223 336033.
C
Org. Lett. XXXX, XXX, XXX−XXX