6758
S. M. M. Lopes et al. / Tetrahedron Letters 51 (2010) 6756–6759
Biological Activity of Phosphono- and Phosphino-Peptides; John Wiley & Sons:
N
N
N
Chichester, 2000; pp 173–203. 407–442; (e) Kafarski, P.; Lejczak, B. Phosphorus,
Sulfur Silicon 1991, 63, 193–215; (f) Kafarski, P.; Lejczak, B. Curr. Med. Chem.
Anti-Cancer Agents 2001, 1, 301–312.
N
Ph
NH2
5. Matta, C. F.; Arabi, A. A.; Weaver, D. F. Eur. J. Med. Chem. 2010, 45, 1868–1872.
6. (a) Dong, L.; Marakovits, J.; Hou, X.; Guo, C.; Greasley, S.; Dagostino, E.; Ferre, R.
A.; Johnson, M. C.; Kraynov, E.; Thomson, J.; Pathak, V.; Murray, B. W. Bioorg.
Med. Chem. Lett. 2010, 20, 2210–2214; (b) Zych, A. J.; Herr, R. J. Pharm. Chem.
2007, 6, 21; (c) Biot, C.; Bauer, H.; Schirmer, R. H.; Davioud-Charvet, E. J. Med.
Chem. 2004, 47, 5972–5983; (d) Yuan, H.; Silverman, R. B. Bioorg. Med. Chem.
2006, 14, 1331–1338; (e) Schwarz, J. B.; Colbry, N. L.; Zhu, Z.; Nichelson, B.;
Barta, N. S.; Lin, K.; Hudack, R. A.; Gibbons, S. E.; Galatsis, P.; DeOrazio, R. J.;
Manning, D. D.; Vartanian, M. G.; Kinsora, J. J.; Lotarski, S. M.; Li, Z.; Dickerson,
M. R.; El-Kattan, A.; Thorpe, A. J.; Donevan, S. D.; Taylor, C. J.; Wustrow, D. J.
Bioorg. Med. Chem. Lett. 2006, 16, 3559–3563; (f) Herr, R. J. Bioorg. Med. Chem.
2002, 10, 3379–3393.
N
H
i)
13 (66%)
(8, 9)
N
N
N
N
Ph
H
N
NH2
14 (66%)
Scheme 3. Reduction to 5-(1-aminoalkyl)-1H-tetrazoles. Reagents and conditions:
7. (a) Holland, G. F.; Pereira, J. N. J. Med. Chem. 1967, 10, 149–154; (b) Figdor, S. K.;
Schach von Wittenau, M. J. Med. Chem. 1967, 10, 1158–1159.
(i) Al/Hg; THF/10% H2O; rt.
8. (a) Carroll, W. A.; Perez-Medrano, A.; Florjancic, A.; Nelson, D. W.; Peddi, S.; Li,
T.; Bunnelle, E. M.; Hirst, G.; Li., B. C. U.S. Patent 7,704,997 B1, 2010.; (b)
Johanson, M.; Minidis, A.; Staaf, K.; Wensbo, D.; McLeod, D.; Edwards, L.; Isaac,
M.; O’Brien, A.; Slassi, A.; Xin, T.; Stefanac, T. U.S. Patent 7,691,892 B2, 2010.; (c)
Li, J. J.; Wang, H.; Li, J.; Qu, F.; Swartz, S. G.; Hernández, A. S.; Biller, S. A.; Robl, J.
A.; Tino, J. A.; Slusarchyk, D.; Seethala, R.; Sleph, P.; Yan, M.; Grover, G.; Flynn,
N.; Murphy, B. J.; Gordon, D. Bioorg. Med. Chem. Lett. 2008, 18, 2536–2539; (d)
Hernandez, A. S.; Cheng, P. T. W.; Musial, C. M.; Swartz, S. G.; George, R. J.;
Grover, G.; Slusarchyk, D.; Seethala, R. K.; Smith, M.; Dickinson, K.; Giupponi, L.;
Longhi, D. A.; Flynn, N.; Murphy, B. J.; Gordon, D. A.; Biller, S. A.; Robl, J. A.; Tino,
J. A. Bioorg. Med. Chem. Lett. 2007, 17, 5928–5933.
9. (a) Lenda, F.; Guenoun, F.; Martinez, J.; Lamaty, F. Tetrahedron Lett. 2007, 48,
805–808; (b) Maya, B. C. H.; Abell, A. D. Tetrahedron Lett. 2001, 42, 5641–5644;
(c) Zabrocki, J.; Marshall, G. R. In Methods in Molecular Medicine,
Peptidomimetics Protocols; Kazmierski, W. M., Ed.; Humana Press Inc: Totowa,
NJ, 1999; pp 417–436; (d) Ankersen, M.; Peschke, B.; Hansen, B. S.; Hansen, T.
K. Bioorg. Med. Chem. Lett. 1997, 7, 1293–1298.
3. Conclusions
Herein, the first examples of Diels–Alder reactions of 5-(1-nitr-
osovinyl)-1H-tetrazole 4, generated in situ from the corresponding
bromooxime 3, with electron rich alkenes and heterocycles are re-
ported. The products are obtained with high selectivity, the yields
being comparable or somewhat higher than those reported for
nitrosoalkenes bearing a 3-ethoxycarbonyl substituent and better
than those carrying a phosphonate group at the same position. Fur-
thermore, it was demonstrated that the reduction of these adducts
allows access to 5-(1-aminoalkyl)-1H-tetrazoles. Thus, the present
work may be regarded as the opening door to a novel synthetic
methodology to this important class of compounds, bioisosteres
10. Myznikov, L. V.; Hrabalek, A.; Koldobskii, G. I. Chem. Heterocycl. Compd. 2007,
43, 1–9.
11. (a) Sureshbabu, V. V.;Naik, S. A.;Nagendra, G. Synth. Commun. 2009, 39, 395–406;
(b) Sureshbabu, V. V.; Venkataramanarao, R.; Naik, S. A.; Chennakrishnareddy, G.
Tetrahedron Lett. 2007, 48, 7038–7041; (c) Bosch, L.; Vilarrasa, J. Angew. Chem.,
Int. Ed. 2007, 46, 3926–3930; (d) Manturewicz, M.; Grzonka, Z. Pol. J. Chem. 2007,
81, 2121–2131; (e) Moutevelis-Minakakis, P.; Filippakou, M.; Sinanoglou, C.;
Kokotos, G. J. Pept. Sci. 2006, 12, 377–382; (f) Morozova, S. E.; Esikov, K. A.;
Dmitrieva, T. N.; Malin, A. A.; Ostrovskii, V. A. Russ. J. Org. Chem. 2004, 443–
445; (g) Himo, F.; Demko, Z. P.; Noodleman, L.; Sharpless, K. B. J. Am. Chem. Soc.
2003, 125, 9983–9987; (h) Demko, Z. P.; Sharpless, K. B. Org. Lett. 2002, 4, 2525–
2527; (i) Itoh, F.; Yukishige, K.; Wajima, M.; Ootsu, K.; Akimoto, H. Chem. Pharm.
Bull. 1995, 43, 230–235; (j) Grzonka, Z.; Rekowska, E.; Liberek, B. Tetrahedron
1971, 45, 967–980; (k) McManus, J. M.; Herbst, R. M. J. Org. Chem. 1959, 24, 1643–
1649.
of a-aminoacids.
Acknowledgements
Thanks are due to Dr. T. L. Gilchrist for helpful discussions. The
authors acknowledge the Fundação para a Ciência e a Tecnologia
for the Ph.D. grant SFRH/BD/45128/2008 and the Nuclear Magnetic
Resonance Laboratory of the Coimbra Chemical Centre (www.
nmrccc.uc.pt), University of Coimbra for obtaining the NMR data.
12. (a) Clemençon, I. F.; Ganem, B. Tetrahedron 2007, 63, 8665–8669; (b) Jacobsok,
C. R.; Amstutz, E. D. J. Org. Chem. 1954, 19, 1652–1661.
Supplementary data
13. 5-Bromoacetyl-1H-1-phenyltetrazole, 2. To
a solution of 5-acetyl-1-phenyl-
tetrazole (0.188 g, 0.01 mol) in a mixture of diethyl ether/dioxane (70:30) was
added bromine (0.160 g, 0.01 mol). The reaction mixture was stirred at room
temperature for 4 h and poured onto a mixture of water/ice and extracted with
ether. The organic layer was dried over anhydrous Na2SO4 and the solvent was
evaporated off. The compound was obtained as a white solid in 79% yield. Mp
Supplementary data associated with this article can be found, in
82.5–84.3 °C (diethyl ether). IR (KBr) 769, 979, 1503, 1722, 1736 cmꢁ1 1H NMR
.
References and notes
(400 MHz) CDCl3 d 4.75 (s, 2H); 7.49–7.64 (m, 5H). 13C NMR (100 MHz) CDCl3 d
32.4, 125.2, 129.5, 131.1, 133.6, 147.7, 180.3.
5-(2-Bromo-1-hydroxyiminoethyl)-1H-1-phenyltetrazole, 3. The 5-Bromoacetyl-
1. Reviews see: (a) Lemos, A. Molecules 2009, 14, 4098–4119; (b) Rai, K. M. L. Top.
Heterocycl. Chem. 2008, 13, 1–69; (c) Reissig, H. U.; Zimmer, R. 1-Nitrosoalkenes
In Science of Synthesis; Molander, G. A., Ed.; Thieme: Stuttgard, Germany, 2006;
Vol. 33, pp 371–389; (d) Tsoungas, P. G. Heterocycles 2002, 57, 1149–1178; (e)
Lyapkalo, I. M.; Ioffe, S. Russ. Chem. Rev. 1998, 67, 467–484; (f) Gilchrist, T. L.;
Wood, J. E. In Comprehensive Heterocyclic Chemistry II; Boulton, A. J., Ed.;
Pergamon Press: Oxford, 1996; Vol. 6, pp 279–299; (g) Gilchrist, T. L. Chem. Soc.
Rev. 1983, 12, 53–73.
2. (a) Gallos, J. K.; Alexandraki, E. S.; Stathakis, C. I. Heterocycles 2007, 71, 1127; (b)
Gallos, J. K.; Sarli, V. C.; Massen, Z. S.; Varvogli, A. C.; Papadoyanni, C. Z.;
Papaspyrou, S. D.; Argyropoulos, N. G. Tetrahedron 2005, 61, 565–574; (c)
Hegazi, S.; Titouani, S. L.; Soufiaoui, M.; Tahdi, A. Tetrahedron 2004, 60, 10793–
10798; (d) Gallos, J. K.; Sarli, V. C.; Varvogli, A. C.; Papadoyanni, C. Z.;
Papaspyrou, S. D.; Argyropoulos, N. G. Tetrahedron Lett. 2003, 44, 3905–3909;
(e) Angermann, J.; Homann, K.; Reissig, H.-U.; Zimmer, R. Synlett 1995, 1014–
1016; (f) Zimmer, R.; Arnold, T.; Homann, K.; Reissig, H.-U. Synthesis 1994,
1050–1055; (g) Gilchrist, T. L.; Lingham, D. A.; Roberts, T. G. J. Chem. Soc., Chem.
Commun. 1979, 1089–1090.
3. (a) Guimarães, E.; Lemos, A.; Lopes, M. Phosphorus, Sulfur Silicon Relat. Elem.
2007, 182, 2149–2155; (b) de los Santos, J. M.; Ignacio, R.; Aparicio, D.; Palacios,
F. J. Org. Chem. 2007, 72, 5202–5206.
4. (a) Ordóñez, M.; Rojas-Cabrera, H.; Cativiela, C. Tetrahedron 2009, 65, 17–49;
(b) Palacios, F.; Alonso, C.; de los Santos, J. M. Chem. Rev. 2005, 105, 899–931;
(c) Moonen, K.; Laureyn, I.; Stevens, C. V. Chem. Rev. 2004, 104, 6177–6216; (d)
Kafarski, P.; Lejczak, B. In Aminophosphinic and Aminophosphonic Acids.
Chemistry and Biological Activity; Kukhar, V. P., Hudson, H. R., Eds.; The
1H-1-phenyltetrazole (1.88 mmol) was dissolved in
a mixture of CH2Cl2/
CH3OH (60:40) and hydroxylamine hydrochloride (0.392 g, 5.64 mmol) was
added. The reaction mixture was stirred at room temperature for 48 h. The
solvents removed and the substrate dissolved in water and ethyl acetate.
Organic layer was dried over anhydrous Na2SO4 and the solvent evaporated.
The compound was obtained as a white solid in 83% yield. Mp 143.2–144.5 °C
(from dichloromethane). IR (KBr) 687, 770, 979, 1023, 1376, 1495, 3268 cmꢁ1
.
1H NMR (400 MHz) DMSO-d6 d 4.70 (s, 2H), 7.57–7.62 (m, 5H, ArH), 13.07 (s,
1H, OH). 13C NMR (100 MHz) DMSO-d6 d 33.7, 126.3, 129.8, 130.0, 130.3, 130.9,
135.3, 142.5, 149.8
14. General procedure for Diels–Alder reactions. To a solution of oxime (0.71 mmol)
in CH2Cl2 (20 mL) and the appropriate diene (7.1 mmol), Na2CO3 (3.6 mmol)
was added at room temperature and the mixture was stirred for 16 h. The
solvent was evaporated and the product was purified by flash chromatography
[ethyl acetate/hexane (1:2)].
6-Ethoxy-3-(1-phenyl-1H-tetrazol-5-yl)-5,6-dihydro-4H-1,2-oxazine, 5. White
solid, 73% yield, mp 143.7–144.4 °C (from ethyl acetate/hexane). IR (KBr)
766, 889, 1108, 1495, 2922, 3451 cmꢁ1 1H NMR (400 MHz) CDCl3 d 1.14 (t,
.
J = 7.1 Hz, 3H), 1.91–2.06 (m, 1H, 5-H), 2.05–2.20 (m, 1H, 5-H), 2.66–2.94 (m,
2H, 4-H), 3.48–3.61 (m, 1H, CH2–ethoxy), 3.66–3.74 (m, 1H, CH2–ethoxy), 5.14
(s, 1H, 6-H), 7.34–7.59 (m, 5H, Ar-H). 13C NMR (100 MHz) CDCl3 d 14.9, 18.0,
22.9, 64.1, 95.8, 125.6, 129.2, 130.2, 135.0, 147.1, 150.0. MS (ESI) m/z 274
[M+H]+ (81%), 233 (11), 203 (35), 201 (23), 189 (15) and 171 (15). HRMS (ESI)
calcd for C13H16N5O2 [M+H]+: 274.13092; found: 274.12985.