acid peptides 3. The target compounds were obtained in very
good to excellent yields in solution and in high purities on the
solid support without the need of acidic protecting group
manipulations. The synthesis of phosphonamidate peptides from
alkyl azido peptides for protease inhibition studies as well as other
phosphinic acid derivatives for analogous Staudinger reactions is
currently under investigation.
The authors acknowledge financial support from the
German Science Foundation (Emmy-Noether program,
HA 4468/2-1), the SFB 765, the Max-Buchner Stiftung and
the Fonds der chemischen Industrie (FCI).
Notes and references
Scheme 3 Synthesis of phosphonamidate peptides 2 and 3. Conversions
1 P. Jiao, D. Nakashima and H. Yamamoto, Angew. Chem., Int. Ed.,
2008, 47, 2411.
2 D. Nakashima and H. Yamamoto, J. Am. Chem. Soc., 2006, 128, 9626.
3 M. Rueping, B. J. Nachtsheim, S. A. Moreth and M. Bolte, Angew.
Chem., Int. Ed., 2008, 47, 593.
were determined by UV measurement at 280 nm. For conditions and LC-
a
MS analysis see Fig. 1 and ESI.z Isolated yield after HPLC purification.
4 S. E. Denmark and G. L. Beutner, Angew. Chem., Int. Ed., 2008,
47, 1560.
5 P. A. Bartlett and C. K. Marlowe, Biochemistry, 1983, 22, 4618.
6 N. P. Camp, P. C. D. Hawkins, P. B. Hitchcock and D. Gani,
Bioorg. Med. Chem. Lett., 1992, 2, 1047.
7 R. E. Galardy, Biochemistry, 1982, 21, 5777.
8 N. E. Jacobsen and P. A. Bartlett, J. Am. Chem. Soc., 1981, 103, 654.
9 A. P. Kaplan and P. A. Bartlett, Biochemistry, 1991, 30, 8165.
10 D. A. Mc Leod, R. I. Brinkworth, J. A. Ashley, K. D. Janda and
P. Wirsching, Bioorg. Med. Chem. Lett., 1991, 1, 653.
11 K. A. Mookhtiar, C. K. Marlowe, P. A. Bartlett and H. E.
Van Wart, Biochemistry, 1987, 26, 1962.
12 A. Yiotakis, D. Georgiadis, M. Matziari, A. Makaritis and
V. Dive, Curr. Org. Chem., 2004, 8, 1135.
13 (a) R. Serwa, I. Wilkening, G. Del Signore, M. Muehlberg,
I. Claussnitzer, C. Weise, M. Gerrits and C. P. R. Hackenberger,
Angew. Chem., Int. Ed., 2009, 48, 8234; (b) R. Serwa, P. Majkut,
B. Horstman, J.-M. Swiecicki, M. Gerrits, E. Krause and C. P.
R. Hackenberger, Chem. Sci., 2010, DOI: 10.1039/c0sc00324g;
(c) D. M. M. Jaradat, H. Hamouda and C. P. R. Hackenberger,
Eur. J. Org. Chem., 2010, DOI: 10.1002/ejoc.201000627.
14 V. Boehrsch, R. Serwa, P. Majkut, E. Krause and C. P. R.
Hackenberger, Chem. Commun., 2010, 46, 3176.
15 P. de Medina, L. S. Ingrassia and M. E. Mulliez, J. Org. Chem.,
2003, 68, 8424.
16 A. Mucha, J. Grembecka, T. Cierpicki and P. Kafarski, Eur. J.
Org. Chem., 2003, 4797.
17 J. L. Radkiewicz, M. A. McAllister, E. Goldstein and K. N. Houk,
J. Org. Chem., 1998, 63, 1419.
18 J. Grembecka, A. Mucha, T. Cierpicki and P. Kafarski, J. Med.
Chem., 2003, 46, 2641.
19 H. M. Holden, D. E. Tronrud, A. F. Monzingo, L. H. Weaver and
B. W. Matthews, Biochemistry, 1987, 26, 8542.
20 M. Izquierdomartin and R. L. Stein, J. Am. Chem. Soc., 1992, 114, 1527.
21 R. Hirschmann, K. M. Yager, C. M. Taylor, J. Witherington,
P. A. Sprengeler, B. W. Phillips, W. Moore and A. B. Smith,
J. Am. Chem. Soc., 1997, 119, 8177.
22 W. P. Malachowski and J. K. Coward, J. Org. Chem., 1994, 59, 7616.
23 A. Mucha, P. Kafarski, F. Plenat and H. J. Cristau, Tetrahedron,
1994, 50, 12743.
24 M. D. Fernandez, C. P. Vlaar, H. Fan, Y. H. Liu, F. R. Fronczek
and R. P. Hammer, J. Org. Chem., 1995, 60, 7390.
25 Y. G. Gololobov and L. F. Kasukhin, Tetrahedron, 1992, 48, 1353.
26 S. Braese, C. Gil, K. Knepper and V. Zimmermann, Angew. Chem.,
Int. Ed., 2005, 44, 5188.
27 T. Kline, M. S. Trent, C. M. Stead, M. S. Lee, M. C. Sousa,
H. B. Felise, H. V. Nguyen and S. I. Miller, Bioorg. Med. Chem.
Lett., 2008, 18, 1507.
28 R. A. Fairhurst, S. P. Collingwood and D. Lambert, Synlett, 2001, 473.
29 R. A. Fairhurst, S. P. Collingwood, D. Lambert and E. Wissler,
Synlett, 2002, 763.
Fig. 1 (A) HRMS analysis and HPLC profile of crude 2k; (B) HRMS
analysis, 31P-NMR and HPLC profile of crude 3a. For conditions see ESI.z
an analogous silylation and Staudinger reaction sequence with
immobilized peptide 10a (Scheme 3). We were delighted to find
that peptides 3a–c were formed as major products. However,
small amounts (7–25%) of the corresponding amino peptides
appeared in the LC-MS traces, which are presumably formed
by P(QO)–NH bond cleavage during the HPLC measurements.
The high conversion to 3a was further validated by 31P-NMR
measurement of the crude peptide 3a in which only one phospho-
namidate species was present. Addition of phenylphosphonic acid
to the NMR sample indicated that the previous NMR signal did
not result from the expected phosphorous cleavage product of 3a.
Finally, we attempted to access a phosphonamidate acid
peptide 3 by light cleavage of the nitro benzyl ester 2n. This
procedure would allow the synthesis of a relatively stable phospho-
namidate peptide, which could be converted to the more labile
peptide 3 during biological applications. After ten minutes of UV
irradiation concomitant P(QO)–NH bond cleavage occurred in
addition to the formation of 3a (see ESIz). Currently, we are further
optimizing this procedure by the synthesis of electron rich nitro-
benzyl phosphinates which allows milder irradiation conditions.
In conclusion, we have demonstrated that the Staudinger
reaction of silylated phosphinic acids and esters with different
aryl azides in solution as well as on the solid support represents an
efficient and straightforward acid-free protocol for the synthesis of
various phosphonamidates including sensitive phosphonamidate
30 H. Vorbruggen, Silcon-mediated Transformations of Functional
¨
groups, Wiley-VCH, Weinheim, 2004.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 349–351 351