410
S.-Q. Cao et al. / Tetrahedron Letters 52 (2011) 407–410
5.0 exhibited an additional stacking effect of the thiocarbonyl
group toward the nearby bases and/or a stronger effect of the mod-
ified base on the Hoogsteen hydrogen bonds.
References and notes
1. Praseuth, D.; Guieysse, A. L.; Hélène, C. Biochim. Biophys. Acta. 1999, 1489, 181–
206.
2. Seidman, M. M.; Glazer, P. M. J. Clin. Invest. 2003, 112, 487–494.
3. Guntaka, R. V.; Varma, B. R.; Weber, K. T. Int. J. Biochem. Cell Biol. 2003, 35, 22–
31.
4. Duca, M.; Vekhoff, P.; Oussedik, K.; Halby, L.; Arimondo, P. B. Nucleic Acids Res.
2008, 36, 5123–5138.
5. Howard, F. B.; Frazier, J.; Lipsett, M. N.; Miles, H. T. Biochem. Biophys. Res.
Commun. 1964, 17, 93–102.
In conclusion, we synthesized s4 iC 30-phosphoramite 5 and
W
succeeded in incorporating this thio-substituted C-nucleoside into
TFOs. In the synthesis of the modified oligonucleotides, we found
that the deprotection and cleavages by ammonia should be per-
formed in the presence of NaSH and that the removal of the
TBDMS groups should be performed under acidic conditions to
suppress the side reactions at the thiocarbonyl group. Further-
6. Thiele, D.; Guschlbauer, W. Biopolymer 1971, 10, 143–157.
7. Xiang, G.; Soussou, W.; McLaughlin, L. W. J. Am. Chem. Soc. 1994, 116, 11155–
11156.
more, under neutral conditions, the TFO containing s4
WiC exhib-
8. Von Krosigk, U.; Benner, S. A. J. Am. Chem. Soc. 1995, 117, 5361–5362.
9. Sollogoub, M.; Fox, K. R.; Powers, V. E. C.; Brown, T. Tetrahedron Lett. 2002, 43,
3121–3123.
ited a significant increase in triplex stability as compared to the
unmodified TFOs. More detailed studies of the mechanism associ-
ated with the stabilization of triplexes with s4
progress.
WiC are now in
10. Ono, A.; Ts´o, P. O. P.; Kan, L. S. J. Am. Chem. Soc. 1991, 113, 4032–4033.
´
11. Ono, A.; Tso, P. O. P.; Kan, L. S. J. Org. Chem. 1992, 57, 3225–3230.
12. Okamoto, I.; Seio, K.; Sekine, M. Bioorg. Med. Chem. Lett. 2006, 16, 3334–3336.
13. Okamoto, I.; Cao, S. Q.; Tanaka, H.; Seio, K.; Sekine, M. Chem. Lett. 2009, 38,
174–175.
Acknowledgments
14. Roberts, R. W.; Crothers, D. M. Science 1992, 258, 1463–1466.
15. Ti, G. S.; Gaffney, B. L.; Jones, R. A. J. Am. Chem. Soc. 1982, 104, 1316–1319.
16. Scaringe, S. A.; Francklyn, C.; Usman, N. Nucleic Acids Res. 1990, 18, 5433–5441.
17. Seliger, H.; Gupta, K. C. Angew. Chem. Int., Ed. Engl. 1985, 24, 685–687.
18. Ogilvie, K. K.; Usman, N.; Nicoghosian, K.; Cedergren, R. J. Proc. Natl. Acad. Sci.
U.S.A. 1988, 85, 5764–5768.
19. Okamoto, I.; Seio, K.; Sekine, M. Tetrahedron Lett. 2006, 47, 583–585.
20. Wu, T.; Ogilvie, K. K.; Pon, R. T. Nucleic Acids Res. 1989, 17, 3501–3517.
21. Oae, S. Organic Sulfur Chemistry: Structure and Mechanism; CRC Press, 1991.
22. Kawahara, S.; Wada, T.; Sekine, M. J. Am. Chem. Soc. 1996, 118, 9461–9468.
This study was supported by a Grant-in-Aid for Scientific Re-
search from the Ministry of Education, Culture, Sports, Science
and Technology, Japan. This study was also supported in part by
the global COE project. The ESI-TOF mass spectra of the dimers
and the MALDI-TOF mass spectra of the oligonucleotides were
kindly measured by Mr. Koizumi, M. from the Center for Advanced
Materials Analysis, Technical Department, TIT.