ORGANIC
LETTERS
2009
Vol. 11, No. 21
4974-4977
Neopentylglycolborylation of Aryl
Chlorides Catalyzed by the Mixed
Ligand System NiCl2(dppp)/dppf
Costel Moldoveanu, Daniela A. Wilson, Christopher J. Wilson, Patrick Corcoran,
Brad M. Rosen, and Virgil Percec*
Roy & Diana Vagelos Laboratories, Department of Chemistry, UniVersity of
PennsylVania, Philadelphia, PennsylVania 19104-6323
Received September 17, 2009
ABSTRACT
The mixed ligand system 10 mol % NiCl2(dppp) with 5 mol % dppf was discovered to be an extremely efficient catalyst for the
neopentylglycolborylation of a diversity of electron-rich and electron-deficient aryl chlorides. Optimization showed that 5 mol % catalyst with
10% dppf was even more efficient. These results highlight the complexity of the relationship between catalyst and coligand in Ni catalysis and
the benefit of combinations of mixed ligand in catalyst design.
Interest in boronic acids as synthetic intermediates for cross-
coupling, as medicinal agents, and as components of supramo-
lecular assemblies and functional materials1 served to amplify
the necessity for more efficient and robust methods for the
synthesis of arylboronic acids and esters. Arylboronic acids and
esters are often synthesized from their corresponding aryl halides
via hard-metalation approaches.2 Pd-catalyzed Miyaura bory-
lation3 provides milder conditions that are tolerated by a greater
diversity of functional groups on the substrate. Most frequently,
Pd-catalyzed borylation of aryl bromides, iodides, and triflates
employs tetraalkoxydiboron3a,4 and pinacolborane3b,5 as a
boron source.
architectures6 and their precursors.7 Inspired by an earlier
publication wherein Ni-catalyzed pinacolborylation of two
aryl bromides was reported,8 we developed an efficient two-
step, one-pot NiCl2(dppp)/dppp-catalyzed neopentylglycol-
(4) (a) Brotherton, R. J.; McCloskey, J. L.; Petterson, L. L.; Steinberg,
H. J. Am. Chem. Soc. 1960, 82, 6243. (b) Lawlor, F. J.; Norman, N. C.;
Picket, N. L.; Robins, E. G.; Nguyen, P.; Lesley, G.; Marder, T. B.;
Ashmore, J. A.; Green, J. C. Inorg. Chem. 1998, 37, 5282. (c) Ishiyama,
T.; Murata, M.; Ahiko, T.-A.; Miyaura, N.; Hart, D. J. Org. Synth. 2000,
77, 176.
(5) Tucker, C. E.; Davidson, J.; Knochel, P. J. Org. Chem. 1992, 57,
3482.
(6) (a) Percec, V.; Zhao, M.; Bae, J.-Y.; Hill, D. H. Macromolecules
1996, 29, 3727. (b) Percec, V.; Holerca, M. N.; Nummelin, S.; Morrrison,
J. J.; Glodde, M.; Smidrkal, J.; Peterca, M.; Rosen, B. M.; Uchida, S.;
Balagurusamy, V. S. K.; Sienkowska, M. J.; Heiney, P. A. Chem.sEur. J.
2006, 12, 5731. (c) Percec, V.; Won, B. C.; Peterca, M.; Heiney, P. A.
J. Am. Chem. Soc. 2007, 129, 11265.
Our laboratory is involved in the development of Ni-
catalyzed approaches to the synthesis of complex molecular
(1) (a) Niu, W.; O’Sullivan, C.; Rambo, B. M.; Smith, M. D.; Lavigne,
J. J. Chem. Commun. 2005, 4342. (b) Jamese, T. D.; Shinkai, S. Top. Curr.
Chem. 2002, 218, 159.
(7) (a) Percec, V.; Bae, J.-Y.; Zhao, M.; Hill, D. H. J. Org. Chem. 1995,
60, 176. (b) Percec, V.; Bae, J.-Y.; Hill, D. H. J. Org. Chem. 1995, 60,
1060. (c) Percec, V.; Bae, J.-Y.; Hill, D. H.; Zhao, M. J. Org. Chem. 1995,
60, 1066. (d) Percec, V.; Bae, J.-Y.; Hill, D. H. J. Org. Chem. 1995, 60,
6895. (e) Percec, V.; Golding, G. M.; Smidrkal, J.; Weichold, O. J. Org.
Chem. 2004, 69, 3447.
(2) Boronic Acids; Hall, D. G., Ed.; Wiley-VCH: Weinheim, Germany,
2005.
(3) (a) Ishiyama, T.; Murata, M.; Miyaura, N. J. Org. Chem. 1995, 60,
7508. (b) Murata, M.; Watanabe, S.; Masuda, Y. J. Org. Chem. 1997, 62,
6458.
(8) Morgan, A. B.; Jurs, J. L.; Tour, J. M. J. Appl. Polym. Sci. 2000,
76, 1257.
10.1021/ol902155e CCC: $40.75
Published on Web 10/02/2009
2009 American Chemical Society