S. Díaz-Oltra et al. / Tetrahedron Letters 50 (2009) 3783–3785
3785
Aoki, M.; Sakai, N.; Fujimoto, N.; Kawashima, A. Tetrahedron Lett. 2009, 50, 108–
110.
5. Hande, S. M.; Uenishi, J. Tetrahedron Lett. 2009, 50, 189–192. The compound
with structure 2 was also synthesized by these authors and found to be
different from aspergillide A.
6. Nagasawa, T.; Kuwahara, S. Org. Lett. 2009, 11, 761–764.
7. When we started our synthetic efforts, the synthesis of Hande and Uenishi had
not yet appeared. Our initial synthetic target therefore was aspergillide A,
assumedly having structure 1.
17. Compound 15 is a ca. 2:1 mixture of anomers, each of which being a ca. 9:1
mixture of E/Z geometric isomers. The 1H NMR spectrum shows four doublets
in the d 6.50–5.50 range with the expected coupling constant values. Major
anomer: d 5.64 (d, J = 7.9 Hz; E isomer) and 5.59 (d, J = 7.9 Hz; Z isomer); minor
anomer: d 6.38 (d, J = 3.1 Hz; E isomer) and 6.33 (d, J = 3.1 Hz; Z isomer).
18. (a) Simchen, G.; West, W. Synthesis 1977, 247–248; (b) Evans, D. A.; Scheidt, K.
A.; Johnston, J. N.; Willis, M. C. J. Am. Chem. Soc. 2001, 123, 4480–4491.
19. (a) Lewis, M. D.; Cha, J. K.; Kishi, Y. J. Am. Chem. Soc. 1982, 104, 4976–4978; (b)
Paterson, I.; Luckhurst, C. A. Tetrahedron Lett. 2003, 44, 3749–3754.
8. Dixon, D. J.; Ley, S. V.; Tate, E. W. J. Chem. Soc. Perkin Trans. I 2000, 2385–2394.
9. Dixon, D. J.; Ley, S. V.; Reynolds, D. J. Chem. Eur. J. 2002, 8, 1621–1636.
10. (a) Mislow, K.; OBrien, R. E.; Schaefer, H. J. Am. Chem. Soc. 1962, 84, 1940–1944;
20. We have found one precedent of this Mukaiyama-type C-glycosidation method
using
a ketene O,S-acetal: Vitale, J. P.; Wolckenhauer, S. A.; Do, N. M.;
´
Rychnovsky, S. D. Org. Lett. 2005, 7, 3255–3258.
(b) Takai, K.; Heathcock, C. H. J. Org. Chem. 1985, 50, 3247–3251; (c) Marshall, J.
A.; Seletsky, B. M.; Luke, G. P. J. Org. Chem. 1994, 59, 3413–3420; (d) Chen, M.-
D.; He, M.-Z.; Zhou, X.; Huang, L.-Q.; Ruan, Y.-P.; Huang, P.-Q. Tetrahedron 2005,
61, 1335–1344; (e) Yokokawa, F.; Inaizumia, A.; Shioiri, T. Tetrahedron 2005, 61,
1459–1480.
21. (a) Connon, S. J.; Blechert, S. Angew. Chem., Int. Ed. 2003, 42, 1900–1923; (b)
Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H. J. Am. Chem. Soc. 2003,
125, 11360–11370; (c) Vernall, A. J.; Abell, A. D. Aldrichim. Acta 2003, 36, 93–
105; (d) Schrodi, Y.; Pederson, R. L. Aldrichim. Acta 2007, 40, 45–52.
22. Inanaga, J.; Hirata, K.; Saeki, H.; Katsuki, T.; Yamaguchi, M. Bull. Chem. Soc. Jpn.
1979, 52, 1989–1993.
23. (a) Ikemoto, N.; Schreiber, S. L. J. Am. Chem. Soc. 1992, 114, 2524–2536; (b)
Crimmins, M. T.; Emmitte, K. A. Org. Lett. 1999, 1, 2029–2032.
24. Compounds (E)-17 and (Z)-17 were separated on a silica gel column using
hexanes–EtOAc mixtures as the eluent (gradient from 95:5 to 90:10).
Compound 1 was purified on a silica gel column using a 70:30 mixture of
hexanes–EtOAc. Physical and spectral data of (E)-17, (Z)-17 and 1:(E)-17: oil; Rf
11. (a) Ramachandran, P. V.; Chen, G.-M.; Brown, H. C. Tetrahedron Lett. 1997, 38,
2417–2420; (b) Ramachandran, P. V. Aldrichim. Acta 2002, 35, 23–35.
12. (a) Wipf, P.; Rector, S. R.; Takahashi, H. J. Am. Chem. Soc. 2002, 124, 14848–
14849; (b) Sieng, B.; Ventura, O. L.; Bellosta, V.; Cossy, J. Synlett 2008, 1216–
1218.
13. Protection of the free OH group in compound 13 was crucial. Attempts at
double bond isomerization in 13 under various conditions gave only ketone i in
low yield.
on a silica gel TLC plate (hexanes–EtOAc, 80:20): 0.21; [
a
]
D
ꢁ56.3 (c 1.5;
CHCl3); IR mmax 1732 (lactone C@O) cmꢁ1 1H NMR (500 MHz, CDCl3) d 7.35–
;
OBn
H
7.25 (5H, br m, arom. H), 6.19 (1H, dddd, J = 15.5, 10.8, 4.8, 1.8 Hz; H-9), 5.64
(1H, br dd, J = 15.5, 4 Hz; H-8), 5.06 (1H, m; H-13), 4.72 (1H, d, J = 12.5 Hz;
benzyl), 4.49 (1H, m; H-7), 4.40 (1H, d, J = 12.5 Hz; benzyl), 4.18 (1H, br d,
J = 11 Hz; H-3), 3.32 (1H, br s; H-4), 2.64 (1H, dd, J = 14, 11 Hz; H-2), 2.25–2.15
(2H, m; H-6, H-10), 2.10 (1H, dd, J = 14, 1.7 Hz; H-20), 2.05–1.90 (2H, m; H-5,
H-100), 1.85–1.75 (2H, m; H-11, H-12), 1.70–1.55 (2H, br m; H-50, H-120),
1.45–1.30 (2H, br m; H-60, H-110), 1.17 (3H, d, J = 6.5 Hz; Me-C13); 13C NMR
(125 MHz, CDCl3) d 170.6 (C-1), 138.6 (aromatic quat. C), 137.7 (C-9), 128.8 (C-
8), 128.3, 127.9, 127.6 (aromatic), 73.1 (C-4), 71.2 (C-7), 70.5 (benzyl CH2), 69.9
(C-13), 69.0 (C-3), 39.9 (C-2), 31.7 (C-12), 30.6 (C-10), 24.8 (C-11), 23.0 (C-6),
22.9 (C-5), 19.1 (Me-C13).
TPSO
O
i
14. Both E/Z isomers were synthetically productive. In order to avoid working with
mixtures, however, we tried to convert compound into its nor-methyl
8
derivative (vinyl instead of propenyl) by means of cross metathesis under an
ethylene atmosphere.12a This goal was achieved but yields were not
satisfactory (50–55% at <1 mmol scale) and difficult to reproduce at a larger
scale.
(Z)-17: oil; Rf on a silica gel TLC plate (hexanes–EtOAc, 80:20): 0.33; [
a]D ꢁ28.4
15. We also made attempts at obtaining the aforementioned vinyl derivative by
means of asymmetric ethynylation of aldehyde 10 (Frantz, D. E.; Fässler, R.;
Carreira, E. M., J. Am. Chem. Soc. 2000, 122, 1806–1807) followed by
semihydrogenation of the triple bond. Unfortunately, the ethynylation step
proved to be too slow (mainly starting materials in the reaction mixture after
4 days) and was abandoned.
(c 0.5; CHCl3); IR mmax 1729 (lactone C@O) cmꢁ1 1H NMR (500 MHz, CDCl3) d
;
7.35–7.25 (5H, br m, arom. H), 5.69 (1H, br tt, J ꢀ 10.2, 2.5 Hz; H-9), 5.46 (1H,
br d, J = 10.5 Hz; H-8), 4.88 (1H, m; H-13), 4.68 (1H, d, J = 12.2 Hz; benzyl), 4.63
(1H, m; H-7), 4.40 (1H, d, J = 12.2 Hz; benzyl), 4.16 (1H, dt, J = 11.8, 2.2 Hz; H-
3), 3.30 (1H, br s; H-4), 2.86 (1H, dd, J = 15.2, 11.8 Hz; H-2), 2.76 (1H, m; H-10),
2.20–2.10 (2H, m; H-20, H-6), 2.00 (1H, dq, J = 14, 3.5 Hz; H-5), 1.90 (1H, br d,
J ꢀ 15 Hz; H-100), 1.80–1.50 (5H, br m; H-50, H-11, H-110, H-12, H-120), 1.34
(1H, br dq, J ꢀ 13, 2.5 Hz; H-60), 1.18 (3H, d, J = 6.3 Hz; Me-C13); 13C NMR
Me3Si
(+)-N-methylephedrine
H
OBn
H
(125 MHz, CDCl3)
d 170.6 (C-1), 138.5 (C-9 + aromatic quat. C), 128.3
TPSO
(aromatic), 128.2 (C-8), 127.8, 127.6 (aromatic), 72.5 (C-4), 72.1 (C-13), 70.5
(benzyl CH2), 69.4 (C-3), 69.3 (C-7), 38.4 (C-2), 32.8 (C-12), 27.2 (C-11), 24.7 (C-
10), 24.6 (C-6), 22.1 (C-5), 21.7 (Me-C13).
CHO
10
Zn(OTf)2
, NEt3, tol, RT, 4d
1: oil; Rf on a silica gel TLC plate (hexanes–EtOAc, 60:40): 0.15; [
a
]
ꢁ88.2 (c
D
0.26; MeOH), lit.1
[a
]
D
ꢁ97.2 (c 0.27; MeOH), lit.5
[a
]
D
ꢁ90 (c 0.1; MeOH); IR
m
max 3400 (br, OH), 1732 (lactone C@O) cmꢁ1 1H NMR (500 MHz, C6D6) d 6.19
;
OBn
H
SiMe3
(1H, dddd, J = 15.5, 10.8, 4.8, 1.8 Hz; H-9), 5.64 (1H, br dd, J = 15.5, 4 Hz; H-8),
5.09 (1H, m; H-13), 4.30 (1H, m; H-7), 4.08 (1H, br d, J = 11.4 Hz; H-3), 3.22
(1H, br s; H-4), 2.71 (1H, dd, J = 13.8, 11.6 Hz; H-2), 2.12 (1H, dd, J = 14, 1.7 Hz;
H-20), 2.04 (1H, dddd, J = 13.5, 10.5, 4.8, 2.2 Hz; H-10), 1.85–1.75 (2H, br m; H-
6, H-100), 1.65–1.50 (3H, br m; H-5, H-11, H-12), 1.45–1.30 (3H, br m; H-50, H-
110, H-120), 1.07 (3H, d, J = 6.4 Hz; Me-C13), 1.00 (1H, dddd, J = 14, 4.5, 2.5,
1.3 Hz; H-60); 13C NMR (125 MHz, C6D6) d 169.9 (C-1), 138.2 (C-9), 129.1 (C-8),
71.6 (C-7), 69.9 (C-3), 69.7 (C-13), 67.3 (C-4), 39.9 (C-2), 32.1 (C-12), 30.7 (C-
10), 27.8 (C-5), 25.3 (C-11), 22.6 (C-6), 19.2 (Me-C13).
TPSO
OH
16. (a) De Mico, A.; Margarita, R.; Parlanti, L.; Vescovi, A.; Piancatelli, G. J. Org.
Chem. 1997, 62, 6974–6977; (b) Paterson, I.; Tudge, M. Tetrahedron 2003, 59,
6833–6849; (c) Larrosa, I.; Da Silva, M. I.; Gómez, P. M.; Hannen, P.; Ko, E.;
Lenger, S. R.; Linke, S. R.; White, A. J. P.; Wilton, D.; Barrett, A. G. M. J. Am. Chem.
Soc. 2006, 128, 14042–14043.