Y. Gök et al. / Tetrahedron: Asymmetry 21 (2010) 2768–2774
2773
13C NMR (75.4 MHz, CDCl3): d 28.3 (C), 28.8 (CH2), 30.8 (dd,
JC–P = 4.9, 10.4 Hz, CH), 124.7 (CH), 127.3 (CH), 127.4 (CH), 128.6
(CH), 128.2 (C), 128.7 (d, JC–P = 9.0 Hz, CH), 128.9 (CH), 129.1 (d,
JC–P = 9.0 Hz, CH), 130.7 (d, JC–P = 2.2 Hz, CH), 130.9 (C), 131.6 (d,
JC–P = 9.0 Hz, CH), 132.1 (d, JC–P = 2.2 Hz, CH), 133.7 (d,
JC–P = 9.0 Hz, CH), 137.4 (C), 140.8 (C), 141.8 (C) ppm. 31P NMR
(121.4 MHz, CDCl3): d +14.1 ppm. IR (HATR): 3049, 2392, 1595,
1576, 1496, 1435, 1105, 1059, 878, 853, 757, 694 cmꢂ1. ES-MS:
For 3-(1-naphthyl)cyclohexanone 19Ad: The enantiomeric ex-
cess was determined by chiral HPLC analysis: Chiralcel AD-H col-
umn (250 ꢁ 4.6 mm, particle size 10
lm), solvent: n-hexane/
iPrOH (98:2), flow rate = 1 mL/min, T = 35 °C, retention times:
12.1 min for (ꢂ) and 13.5 min for (+).
For 3-(o-tolyl)cyclohexanone 19Ae: The enantiomeric excess
was determined by chiral GC analysis: Cyclosil
B
120
(30 m ꢁ 0.25 mm ꢁ 0.25
l
m); carrier gas: H2; temperature pro-
940.3 [M+NH4]+. ½a D20
ꢃ
¼ þ82:4 (c 1.0, CHCl3). HRMS (EI): calcd for
gram: 50 °C for 3 min; increase to 200 °C (20 °C/min); 200 °C for
3 min; increase to 240 °C (20 °C/min); 240 °C for 5 min; retention
times: 14.86 min for R and 14.93 min for S.
C
65H58B2P2: 922.4200; found: 922.4198.
4.14. (2R,3R)-1,1-Bis[(diphenylphosphanyl)methyl]-2,3-
For 3-phenylcycloheptanone 19Ca: The enantiomeric excess
was determined by chiral HPLC analysis: Chiralcel OD-H column
bis(30,50-diphenylphenyl)-cyclopropane 2
(250 ꢁ 4.6 mm, particle size 10
lm), solvent: n-hexane/iPrOH
(98:2), flow rate = 1 mL/min, T = 35 °C, retention times: 11.7 min
for (ꢂ) and 13.3 min for (+).
Compound 16 (180.0 mg, 0.195 mmol) was dissolved in de-
gassed EtOH (6 mL) in an oven-dried Schlenk tube under argon
atmosphere. The solution was refluxed for 24 h, subsequently di-
luted with degassed CH2Cl2 (15 mL), and concentrated in vacuo.
The crude product was purified by flash chromatography over sil-
ica gel with degassed solvents (hexane/EtOAc, 95:5) resulting in
152 mg of pure 2 as a colorless oil. 1H NMR (300 MHz, CDCl3): d
2.05 (dd, J = 2.8, 14.4 Hz, 2H), 2.6 (s, 2H), 2.8 (dd (app. d),
J = 14.4 Hz, 2H), 7.15–7.70 (m, 46H) ppm. 13C NMR (125.7 MHz,
CDCl3): d 32.5 (t, JC–P = 17.4 Hz, C), 33.1 (dd, JC–P = 10.1, 13.7 Hz,
CH2), 33.6 (t, JC–P = 7.3 Hz, CH), 124.2 (CH), 127.0 (CH), 127.4
(CH), 127.5 (CH) 127.9 (CH), 128.3 (d, JC–P = 6.4 Hz, CH), 128.7
(CH), 128.8 (d, JC–P = 8.2 Hz, CH), 129.7 (CH), 132.0 (d,
JC–P = 17.4 Hz, CH), 134.6 (d, JC–P = 22.0 Hz, CH), 137.8 (d,
JC–P = 14.7 Hz, C), 139.0 (C), 139.8 (d, JC–P = 13.8 Hz, C), 141.1 (C),
141.7 (C) ppm. 31P NMR (121.4 MHz, CDCl3): d ꢂ20.5 ppm. IR
(HATR): 3054, 2165, 1593, 1496, 1432, 1070, 1028, 909, 881,
Acknowledgments
Y.G., T.N. and J.V.D.E wish to thank Ghent University and COST-
Chemistry (Action D.40-‘Innovative Catalysis’) for financial sup-
port. Professor Dr. Erik Van der Eycken (Laboratory for Organic &
Microwave-Assisted Chemistry (LOMAC), Department of Chemis-
try, Katholieke Universiteit Leuven) is kindly acknowledged for
performing the HRMS-measurements.
References
1. (a)New Frontiers in Asymmetric Catalysis; Mikami, K., Lautens, M., Eds.; Wiley-
VCH: Weinheim, 2007; (b)Principles and Applications of Asymmetric Synthesis;
Lin, G.-Q., Li, Y.-M., Chan, A. S. C., Eds.; Wiley: New York, 2001;
(c)Comprehensive Asymmetric Catalysis; Jacobsen, E. N., Pfaltz, A., Yamamoto,
H., Eds.; Springer: Berlin, 1999.
2. (a) Shintani, R.; Hayashi, T. In New Frontiers in Asymmetric Catalysis; Mikami, K.,
Lautens, M., Eds.; Wiley-VCH: Weinheim, 2007; pp 59–100; (b) Hayashi, T.;
Yamasaki, K. Chem. Rev. 2003, 103, 2829–2844; (c) Fagnou, K.; Lautens, M.
Chem. Rev. 2003, 103, 169–196.
3. (a) Vandyck, K.; Matthys, B.; Willen, M.; Robeyns, K.; Van Meervelt, L.; Van der
Eycken, J. Org. Lett. 2006, 8, 363–366; (b) Ogasawara, M.; Ngo, H. L.; Sakamoto,
T.; Takahashi, T.; Lin, W. Org. Lett. 2005, 7, 2881–2884; (c) Yuan, W.-Y.; Cun, L.-
F.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z. Tetrahedron Lett. 2005, 46, 509–512; (d)
Madec, J.; Michaud, G.; Genêt, J.-P.; Marinetti, A. Tetrahedron: Asymmetry 2004,
15, 2253–2261; (e) Shi, Q.; Xu, L.; Li, X.; Jia, X.; Wang, R.; Au-Yeung, T. T.-L.;
Chan, A. S. C.; Hayashi, T.; Cao, R.; Hong, M. Tetrahedron Lett. 2003, 44, 6505–
6508; (f) Pucheault, M.; Darses, S.; Genêt, J.-P. Eur. J. Org. Chem. 2002, 3552–
3557; (g) Takaya, Y.; Ogasawara, M.; Hayashi, T.; Sakai, M.; Miyaura, N. J. Am.
Chem. Soc. 1998, 120, 5579–5580.
760, 738, 695 cmꢂ1. ES-MS: 895.3 [M+H]+. ½a 2D0
¼ þ95:3 (c 1.0,
ꢃ
CHCl3). HRMS (ES): calcd for C65H52P2: 895.3616; found: 895.3611.
4.15. General procedure for the rhodium-catalyzed asymmetric
1,4-addition of arylboronic acids to cyclic enones
Chiral ligand 1 or 2, (8.58 lmol) and [RhCl(C2H4)2]2 (7.67 lmol)
were dissolved in dry and degassed dioxane (1 mL) and stirred for
20 min at room temperature under an argon atmosphere. Next,
KOH (1.5 M, 0.19 mmol) in degassed H2O was added and the
resulting solution was stirred for another 20 min. Subsequently,
arylboronic acid (0.77 mmol) and cyclic enone (0.385 mmol) were
added and stirred at 50 °C for 3 h. The reaction mixture was passed
through a short pad of silica gel and was eluted with EtOAc. The
crude product was purified by flash chromatography over silica
gel (hexane/Et2O, 85:15), resulting in pure 19.
All adducts were fully characterized by comparison of their
spectroscopic data with those reported in the literature.3a,9i The
absolute configurations were assigned via correlation of their spe-
cific rotation with the literature values.
4. Kuriyama, M.; Nagai, K.; Yamada, K.-I.; Miwa, Y.; Taga, T.; Tomioka, K. J. Am.
Chem. Soc. 2002, 124, 8932–8939.
5. Reetz, M. T.; Moulin, D.; Gosberg, A. Org. Lett. 2001, 3, 4083–4085.
6. (a) Boiteau, J.-G.; Minnaard, A. J.; Feringa, B. L. J. Org. Chem. 2003, 68, 9481–
9484; (b) Iguchi, Y.; Itooka, R.; Miyaura, N. Synlett 2003, 1040–1042.
7. Ma, Y.; Song, S.; Ma, C.; Sun, Z.; Chai, Q.; Andrus, M. B. Angew Chem., Int. Ed.
2003, 42, 5871–5874.
8. For reviews on chiral diene ligands: (a) Shintani, R.; Hayashi, T. Aldrichim. Acta
2009, 42, 31–38; (b) Defieber, C.; Grützmacher, H.; Carreira, E. M. Angew.
Chem., Int. Ed. 2008, 47, 4482–4502; (c) Johnson, J. B.; Rovis, T. Angew. Chem.,
Int. Ed. 2008, 47, 840–871; (d) Glorius, F. Angew. Chem., Int. Ed. 2004, 43,
3364–3366.
9. For some selected examples: (a) Hayashi, T.; Ueyama, K.; Tokunaga, N.;
Yoshida, K. J. Am. Chem. Soc. 2003, 125, 11508–11509; (b) Fischer, C.; Defieber,
C.; Suzuki, T.; Carreira, E. M. J. Am. Chem. Soc. 2004, 126, 1628–1629; (c)
Tokunaga, N.; Otomaru, Y.; Okamoto, K.; Ueyama, K.; Shintani, R.; Hayashi, T. J.
Am. Chem. Soc. 2004, 126, 13584–13585; (d) Otomaru, Y.; Okamoto, K.;
Shintani, R.; Hayashi, T. J. Org. Chem. 2005, 70, 2503–2508; (e) Paquin, J.-F.;
Defieber, C.; Stephenson, C. R. J.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127,
10850–10851; (f) Läng, F.; Breher, F.; Stein, D.; Grützmacher, H. Organometallics
2005, 24, 2997–3007; (g) Helbig, S.; Sauer, S.; Cramer, N.; Laschat, S.; Baro, A.;
Frey, W. Adv. Synth. Catal. 2007, 349, 2331–2337; (h) Wang, Z.-Q.; Feng, C.-G.;
Xu, M.-H.; Lin, G.-Q. J. Am. Chem. Soc. 2007, 129, 5336–5337; (i) Noël, T.;
Vandyck, K.; Van der Eycken, J. Tetrahedron 2007, 63, 12961–12967; (j)
Okamoto, K.; Hayashi, T.; Rawal, V. H. Org. Lett. 2008, 10, 4387–4389; (k)
Nishimura, T.; Nagaosa, M.; Hayashi, T. Chem. Lett. 2008, 37, 860–861; (l)
Sörgel, S.; Tokunaga, N.; Sasaki, K.; Okamoto, K.; Hayashi, T. Org. Lett. 2008, 10,
589–592; (m) Gendrineau, T.; Chuzel, O.; Eijsberg, H.; Genêt, J.-P.; Darses, S.
Angew. Chem., Int. Ed. 2008, 47, 7669–7672; (n) Noël, T.; Gök, Y.; Van der
Eycken, J. Tetrahedron: Asymmetry 2010, 21, 540–543.
For 3-phenylcyclohexanone 19Aa: The enantiomeric excess was
determined by chiral HPLC analysis: Chiralpak AS-H column
(250 ꢁ 4.6 mm, particle size 10
lm), solvent: n-hexane/iPrOH
(98:2), flow rate = 1 mL/min, T = 35 °C, retention times: 18.3 min
for S and 21.4 min for R.
For 3-(4-trifluoromethylphenyl)cyclohexanone 19Ab: The
enantiomeric excess was determined by chiral HPLC analysis: Chir-
alpak AD-H column (250 ꢁ 4.6 mm, particle size 10
lm), solvent:
n-hexane/iPrOH (99:1), flow rate = 1 mL/min, T = 35 °C, retention
times: 14.0 min for (+) and 15.1 min for (ꢂ).
For 3-(4-methoxyphenyl)cyclohexanone 19Ac: The enantio-
meric excess was determined by chiral HPLC analysis: Chiralcel
OD-H column (250 ꢁ 4.6 mm, particle size 10
lm), solvent: n-hex-
ane/iPrOH (98:2), flow rate = 1 mL/min, T = 35 °C, retention times:
13.0 min for (+) and 13.6 min for (ꢂ).