ORGANIC
LETTERS
2011
Vol. 13, No. 6
1474–1477
Palladium-Catalyzed Oxidative
Alkynylation of Heterocycles with
Terminal Alkynes under Air Conditions
Seok Hwan Kim, Jungho Yoon, and Sukbok Chang*
Department of Chemistry, Korea Advanced Institute of Science and Technology
(KAIST), Daejeon 305-701, Republic of Korea
Received January 18, 2011
ABSTRACT
Pd-Catalyzed oxidative alkynylation of azoles with terminal alkynes was developed via simultaneous activation of both heterocyclic sp2 C-H and
alkynyl sp C-H bonds. The choice of palladium catalyst source and external base resulted in being important factors for performing the reaction
with high efficiency and selectivity, and air was successfully utilized as an environmental oxidant in the present alkynylation procedure.
In recent years, a promising strategy of C-H bond
activation has been extensively utilized for C-C bond
formation which is one of the most important topics in
organic chemistry.1 This direction of research has been
stimulated mainly due to the advantage of enabling a more
straightforward access to target molecules without requiring
prefunctionalization of starting molecules, thus minimizing
side products in fewer steps. Therefore, although the C-H
bond functionalization often requires relatively harsh reac-
tion conditions, it is considered as an attractive alternative
to the conventional coupling approaches, in which both
reactants are preactivated (Scheme 1, path I).2 With regard
to this aspect, highly efficient C-C bond forming protocols
have been developed from the direct reaction of heteroar-
enes with aryl- or vinyl-(pseudo)halides (path II).3
More recently, a more challenging route to the C-C
bond formation has been scrutinized using two nonacti-
vated reactants (path III). Indeed, the oxidative C-C bond
formation via the activation of C(sp2)-H or C(sp3)-H
bonds has been extensively studied using various metal
catalysts.4,5 On the other hand, while the activation of
C(sp)-H bonds has been examined for the oxidative
couplings,6 synthetic applications of the strategy still re-
main largely unexplored mainly because of the undesired
homocoupling of terminal alkynes under the conditions.
Although Sonogashira reaction is a powerful tool for
(1) (a) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. Rev. 2002, 102, 1731.
(b) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110,
624. (c) Johansson, C. C. C.; Colacot, T. J. Angew. Chem., Int. Ed. 2010,
49, 676.
(4) For recent examples of C-C bond formation via C(sp2)-H bond
activation, see: (a) Boele, M. D. K.; van Strijdonck, G. P. F.; de Vries,
A. H. M.; Kamer, P. C. J.; de Vries, J. G.; van Leeuwen, P. W. N. M. J.
Am. Chem. Soc. 2002, 124, 1586. (b) Dwight, T. A.; Rue, N. R.; Charyk,
D.; Josselyn, R.; DeBoef, B. Org. Lett. 2007, 9, 3137. (c) Hull, K. L.;
Sanford, M. S. J. Am. Chem. Soc. 2007, 129, 11904. (d) Stuart, D. R.;
Villemure, E.; Fagnou, K. J. Am. Chem. Soc. 2007, 129, 12072. (e) Cho,
S. H.; Hwang, S. J.; Chang, S. J. Am. Chem. Soc. 2008, 130, 9254. (f)
Egami, H.; Katsuki, T. J. Am. Chem. Soc. 2009, 131, 6082. (g) Kwon,
K.-H.; Lee, D. W.; Yi, C. S. Organometallics 2010, 29, 5748. (h) Morimoto,
K.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2010, 12, 2068. (i) Wei, Y.;
Su, W. J. Am. Chem. Soc. 2010, 132, 16377.
(2) (a) Shilov, A. E.; Shul’pin, G. B. Chem. Rev. 1997, 97, 2879. (b)
Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009, 42, 1074.
(c) Giri, R.; Shi, B.-F.; Engle, K. M.; Maugel, N.; Yu, J.-Q. Chem. Soc.
Rev. 2009, 38, 3242. (d) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Commun.
2010, 46, 677. (e) Gunay, A.; Theopold, K. H. Chem. Rev. 2010, 110,
1060. (f) Hwang, S. J.; Cho, S. H.; Chang, S. J. Am. Chem. Soc. 2008,
130, 16158. (g) Park, E. J.; Kim, S. H.; Chang, S. J. Am. Chem. Soc. 2008,
130, 17268. (h) Cho, S. H.; Kim, J. Y.; Lee, S. Y.; Chang, S. Angew.
Chem., Int. Ed. 2009, 48, 9127. (i) Kim, J. Y.; Cho, S. H.; Joseph, J.;
Chang, S. Angew. Chem., Int. Ed. 2010, 49, 9899. (j) Kim, J.; Chang, S. J.
Am. Chem. Soc. 2010, 132, 10272.
(5) For recent examples of C-C bond formation via C(sp3)-H
activation, see: (a) Lin, S.; Song, C. X.; Cai, G. X.; Wang, W.-H.; Shi,
Z.-J. J. Am. Chem. Soc. 2008, 130, 12901. (b) Li, C.-J. Acc. Chem. Res.
2009, 42, 335. (c) Chen, X.; Engle, K. M.; Wang, D.-H.; Yu, J.-Q. Angew.
Chem., Int. Ed. 2009, 48, 5094. (d) Urkalan, K. B.; Sigman, M. S. J. Am.
Chem. Soc. 2009, 131, 18042.
(3) (a) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173.
(b) Lewis, J. C.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2008, 41,
1013. (c) Daugulis, O.; Do, H.-Q.; Shabashov, D. Acc. Chem. Res. 2009,
42, 1074.
r
10.1021/ol200154s
Published on Web 02/24/2011
2011 American Chemical Society