Inorganic Chemistry
ARTICLE
(25) (a) Mather, G. G.; Pidcock, A.; Rapsey, G. J. N. J. Chem. Soc.,
Dalton Trans. 1973, 2095–2099. (b) Crispini, A.; Harrison, K. N.;
Orpen, A. G.; Pringle, P. G.; Wheatcroft, J. R. J. Chem. Soc., Dalton
Trans. 1996, 1069–1076.
2006, 25, 1583–1591. (m) Vedernikov, A. N.; Fettinger, J. C.; Mohr, F. J.
Am. Chem. Soc. 2004, 126, 11160–11161. (n) Vedernikov, A. N.;
Binfield, S. A.; Zavalij, P. Y.; Khusnutdinova, J. R. J. Am. Chem. Soc.
2006, 128, 82–83.
(26) (a) Romeo, R.; Carnabuci, S.; Plutino, M. R.; Romeo, A.;
Rizzato, S.; Albinati, A. Inorg. Chem. 2005, 44, 1248–1262. (b) Romeo,
R.; Monsꢀu Scolaro, L.; Plutino, M. R.; Fabrizi de Biani, F.; Bottari, G.;
Romeo, A. Inorg. Chim. Acta 2003, 350, 143–151. (c) Romeo, R.;
Plutino, M. R.; Monsꢀu Scolaro, L.; Stoccoro, S. Inorg. Chim. Acta 1997,
265, 225–233. (d) Romeo, R.; Arena, G.; Monsꢀu Scolaro, L. Inorg. Chem.
1994, 33, 4029–4037.
(27) (a) Belluco, U.; Giustiniani, M.; Graziani, M. J. Am. Chem. Soc.
1967, 89, 6494–6500. (b) Romeo, R.; Minniti, D.; Lanza, S.; Uguagliati,
P.; Belluco, U. Inorg. Chem. 1978, 17, 2813–2818. (c) Jawad, J. K.;
Puddephatt, R. J. J. Chem. Soc., Chem. Commun. 1977, 892. (d) Romeo,
R.; Minniti, D.; Lanza, S. J. Organomet. Chem. 1979, 165, C36–C38. (e)
Jawad, J. K.; Puddephatt, R. J.; Stalteri, M. A. Inorg. Chem. 1982, 21, 332–
337. (f) Alibrandi, G.; Minniti, D.; Monsꢀu Scolaro, L.; Romeo, R. Inorg.
Chem. 1988, 27, 318–324. (g) Yang, D. S.; Bancroft, G. M.; Bozek, J. D.;
Puddephatt, R. J.; Tse, J. S. Inorg. Chem. 1989, 28, 1–2. (h) Yang, D. S.;
Bancroft, G. M.; Puddephatt, R. J.; Tan, K. H.; Cutler, J. N.; Bozek, J. D.
Inorg. Chem. 1990, 29, 4956–4960.
(33) Rendina, L. M.; Puddephatt, R. J. Chem. Rev. 1997, 97, 1735–
1754.
(34) Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1996,
118, 5961–5976.
(35) Crumpton-Bregel, D. M.; Goldberg, K. I. J. Am. Chem. Soc.
2003, 125, 9442–9456.
(36) Examples of C-H reductive elimination from octahedral
platinum(IV): (a) Jenkins, H. A.; Yap, G. P. A.; Puddephatt, R. J.
Organometallics 1997, 16, 1946–1955. (b) Fekl, U.; Zahl, A.; van Eldik,
R. Organometallics 1999, 18, 4156–4164. (c) Bartlett, K. L.; Goldgerg,
K. I.; Borden, W. T. J. Am. Chem. Soc. 2000, 122, 1456–1465. (d)
Bartlett, K. L.; Goldgerg, K. I.; Borden, W. T. Organometallics 2001, 20,
2669–2678. (e) Luedtke, A. T.; Goldberg, K. I. Inorg. Chem. 2007, 46,
8496–8498. (f) Jensen, M. P.; Wick, D. D.; Reinartz, S.; White, P. S.;
Templeton, J. L.; Goldberg, K. I. J. Am. Chem. Soc. 2003, 125, 8614–
8624. (g) Puddephatt, R. J. Angew. Chem., Int. Ed. 2002, 41, 261–263. (h)
Milstein, D. J. Am. Chem. Soc. 1982, 104, 5227–5228.
(37) (a) Fekl, U.; Kaminsky, W.; Goldberg, K. I. J. Am. Chem. Soc.
2001, 123, 6423–6424. (b) Reinartz, S.; White, P. S.; Brookhart, M.;
Templeton, J. L. J. Am. Chem. Soc. 2001, 123, 6425–6426.
(38) (a) Lo, H. C.; Haskel, A.; Kapon, M.; Keinan, E. J. Am. Chem.
Soc. 2002, 124, 3226–3228. (b) Jones, W. D. Acc. Chem. Res. 2003, 36,
140–146.
(28) (a) Abraham, M. H. In Comprehensive Chemical Kinetics;
Bamford, C. H., Tipper, C. F. H., Eds.; Elsevier: Amsterdam, The
Netherlands, 1973. (b) Eaborn, C. J. Organomet. Chem. 1975, 100,
43–57. (c) Kochi, J. K. Organometallic Mechanisms and Catalysis;
Academic Press: New York, 1978; pp 292-340.
(39) (a) Lian, T.;Bromberg, S. E.;Yang, H.;Proulz, G.;Bergman, R. G.;
Harris, C. B. J. Am. Chem. Soc. 1996, 118, 3769–3770. (b) Bromberg, S. E.;
Yang, H.; Asplund, M. C.; Lian, T.; McNamara, B. K.; Kotz, K. T.;
Yeston, J. S.; Wilkens, M.; Frei, H.; Bergman, R. G.; Harris, C. B. Science
1997, 278, 260–263. (c) Crabtree, R. H. Chem. Rev. 1995, 95, 987–1007.
(d) Hall, C.; Perutz, R. N. Chem. Rev. 1996, 96, 3125–3146.
(40) (a) Hill, G. S.; Puddephatt, R. J. Organometallics 1998, 17,
1478–1486. (b) Siegbahn, P. E. M.; Crabtree, R. H. J. Am. Chem. Soc.
1996, 118, 4442–4450. (c) Bartlett, K. L.; Goldberg, K. I.; Borden, W. T.
J. Am. Chem. Soc. 2000, 122, 1456–1465. (d) Bartlett, K. L.;
Goldberg, K. I.; Borden, W. T. Organometallics 2001, 20, 2669–2678.
(e) Heiberg, H.; Johansson, L.; Gropen, O.; Ryan, O. B.; Swang, O.;
Tilset, M. J. Am. Chem. Soc. 2000, 122, 10831–10845. (f) Gilbert, T. M.;
Hristov, I.; Ziegler, T. Organometallics 2001, 20, 1183–1189.
(41) Johansson, L.; Tilset, M. J. Am. Chem. Soc. 2001, 123, 739–740.
(42) Plutino, M. R.; Monsꢀu Scolaro, L.; Albinati, A.; Romeo, R.
J. Am. Chem. Soc. 2004, 126, 6470–6484.
(29) (a) Perutz, R. N.; Sabo-Etienne, S. Angew. Chem., Int. Ed. 2007,
46, 2578–2592. (b) Lersch, M.; Tilset, M. Chem. Rev. 2005, 105, 2471–
2526. (c) Wick, D. D.; Goldberg, K. I. J. Am. Chem. Soc. 1997, 10235–
10236. (d) Johansson, L.; Ryan, O. B.; Tilset, M. J. Am. Chem. Soc. 1999,
121, 1974–1975. (e) Johansson, L.; Tilset, M.; Labinger, J. A.; Bercaw,
J. E. J. Am. Chem. Soc. 2000, 122, 10846–10855. (f) Johansson, L.; Ryan,
O. B.; R€omming, C.; Tilset, M. J. Am. Chem. Soc. 2001, 123, 6579–6590.
(g) Zhong, H. A.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 2002,
124, 1378–1399. (h) Labinger, J. A.; Bercaw, J. E. Nature 2002, 417,
507–514. (i) Heyduck, A. F.; Driveer, T. G.; Day, M. W.; Labinger, J. A.;
Bercaw, J. E. J. Am. Chem. Soc. 2004, 126, 15034–15035. (j) Driver,
T. G.; Labinger, J. A.; Bercaw, J. E. Organometallics 2005, 24, 3644–3654.
(k) Williams, T. J.; Labinger, J. A.; Bercaw, J. E. Organometallics 2007, 26,
281–287. (l) Driver, T. G.; Williams, T. J.; Labinger, J. A.; Bercaw, J. E.
Organometallics 2007, 26, 294–301. (m) Williams, T. J.; Caffyn, A. J. M.;
Hazary, N.; Oblad, P. F.; Labinger, J. A.; Bercaw, E. J. J. Am. Chem. Soc.
2008, 130, 2418–2419.
(43) Iodide dissociation that precedes ethane elimination from
[PdIMe3(bpy)] is characterized by a very large negative entropy
of activation (ΔSq = -53 ( 25 and -164 ( 17 J K-1 mol-1) in
acetone and methanol, respectively. Byers, P. K.; Canty, A. J.; Crespo,
M.; Puddephatt, R. J.; Scott, J. D. Organometallics 1988, 7, 1363–1367.
(44) Preliminary results of a kinetic study of solvent exchange between
(30) (a) Romeo, R.; Plutino, M. R.; Romeo, A. Helv. Chim. Acta
2005, 88, 507–522. (b) Marrone, A.; Re, N.; Romeo, R. Organometallics
2008, 27, 2215–2222.
(31) (a) De Felice, V.; De Renzi, A.; Panunzi, A.; Tesauro, D.
J. Organomet. Chem. 1995, 488, C13–C14. (b) Hill, G. S.; Rendina,
L. M.; Puddephatt, R. J. Organometallics 1995, 14, 4966–4968. (c) Stahl,
S. S.; Labinger, J. A.; Bercaw, J. E. J. Am. Chem. Soc. 1995, 117, 9371–
9372.
(32) (a) O’Reilly, S. A.; White, P. S.; Templeton, J. L. J. Am. Chem.
Soc. 1996, 118, 5684–5689. (b) Canty, A. J.; Dedieu, A.; Jin, H.; Milet, A.;
Richmond, M. K. Organometallics 1996, 15, 2845–2847. (c) Reinartz, S.;
White, P. S.; Brookhart, M.; Templeton, J. L. J. Am. Chem. Soc. 2001, 123,
12724–12725. (d) Reinartz, S.; White, P. S.; Brookhart, M.; Templeton,
J. L. Organometallics 2001, 20, 1709–1712. (e) Norris, C. M.; Reinartz, S.;
White, P. S.; Templeton, J. L. Organometallics 2002, 21, 5649–5656.
(f) Hill, G. S.; Puddephatt, R. J. J. Am. Chem. Soc. 1996, 118, 8745–8746.
(g) Hill, G. S.; Vittal, J. J.; Puddephatt, R. J. Organometallics 1997,
16, 1209–1217. (h) Prokopchuk, E. M.; Puddephatt, R. J. Organometallics
2003, 22, 787–796. (i) Jenkins, H. A.; Klempner, M. J.; Prokopchuk,
E. M.; Puddephatt, R. J. Inorg. Chim. Acta 2003, 352, 72–78.
(j) Prokopchuk, E. M.; Jenkins, H. A.; Puddephatt, R. J. Organometallics
1999, 18, 2861–2866. (k) Puddephatt, R. J. Coord. Chem. Rev.
2001, 219-221, 157–185. (l) Zhang, F.; Prokopchuk, E. M.;
Broczkowski, M. E.; Jennings, M. C.; Puddephatt, R. J. Organometallics
1
free and coordinated acetonitrile in [Pt(dppe)(CH3)(CH3CN]þ by H
NMR magnetization transfer experiments have shown that the exchange is
very fast (“rate” = k2[Complex][CH3CN], with k2 = 0.711 s-1 at 298 K in
CD2Cl4). The exchange takes place with an associative mode of activation.
The presence of a similar process on cis-[Pt(PEt3)2(CH2R)(CH3CN)]þ is
obvious, but it is fruitless in affecting isomerization. Rather, the exchange
gives an independent clear-cut indication that the rate of reentry of CH3CN
on cis-[Pt(PEt3)2(CH2R)]þ must be very high and that the condition (k-D
. kT) for a preequilibrium treatment in deriving the rate law is totally
fulfilled.
(45) As an example, the complex cis-[Pt(PEt3)2(Me)2] does not
isomerize. The complex cis-[Pt(PEt3)2(Me)Cl] is stable in dichloromethane
and in a number of nonpolar solvent. Its rate of isomerization increases upon
an increase in the electrophilic character of the solvent, which is important in
promoting Pt-Cl bond breaking (Romeo, R.; Minniti, D.; Lanza, S. Inorg.
Chem. 1980, 19, 3663–3668). The rate of isomerization of the cationic
solvento complexes cis-[Pt(PEt3)2(Me)(S)]þ depends on the coordinating
properties of the solvent being very low when S is acetonitrile (t1/2 ≈24 h11),
2238
dx.doi.org/10.1021/ic101879s |Inorg. Chem. 2011, 50, 2224–2239