ChemComm
Communication
a = 15.2646(3), c = 22.1864(8) Å, V = 5169.6(3) Å3, Z = 4. Refinement of
287 parameters on 7863 independent reflections out of 123 984 measured
reflections (Rint = 0.037) led to R1 = 0.031, wR2 = 0.061, Drmin = À1.62,
Drmax = 0.50 e Å–3, Flack parameter 0.491(7). Crystal data for 6[K*]:
C44H57KO6Th2, M = 1185.08, monoclinic, space group C2/c, a =
37.0796(18), b = 9.8234(3), c = 25.6897(13) Å, b = 118.992(2)1, V =
8184.8(6) Å3, Z = 8. Refinement of 478 parameters on 12 469 independent
reflections out of 148 463 measured reflections (Rint = 0.072) led to
These angles are quite similar denoting a weak steric pressure
in the hydride 6.
The mean Th–C(Cot) distances in the two 11-coordinate com-
plexes 4 and 5 are identical and equal to 2.78(2) Å, a value larger
than 2.701(4) Å in the linear 10-coordinate thorocene.12 This
difference reflects the distinct charges and coordination numbers
of the complexes. These distances are also similar to those reported
in some mono-Cot compounds,21 such as [(Cot)ThCl2(THF)2]
(2.72(2) Å)21a or [(Cot)Th(N{SiMe3}2)2] (2.75(2) Å),21b and can be
compared with the average U–C(Cot) distance in [(Cot)2U(CN)]À
(2.73(2) Å), the latter smaller distance being due to the ionic
radius of U4+ being smaller than that of Th4+ by ca. 0.05 Å.22 The
Th–C(Cot) distances in 6 are quite similar to those in 4 and 5,
averaging 2.77(3) Å in 6[Na*(THF)2] and 2.79(3) Å in 6[K*]. All the
ThÁ Á ÁCg distances are in the narrow range of 2.09–2.12 Å.
The Th–Ccyanide distance of 2.648(4) Å is close to 2.626(4) Å in
[(Cot)2U(CN)]À, whereas the Th–Nazide bond length of 2.518(4) Å
can be compared with U–Nazide distances which span the range
2.219(6)–2.564(12) Å15b,c and to the Th–NC bond length of
2.454(4) Å in (tBu3C5H2)2Th(OSiMe)3(NC).20
R1 = 0.036, wR2 = 0.053, Drmin = À1.41, Drmax = 0.93 e ÅÀ3
.
1 (a) A. Streitwieser and U. Mu¨ller-Westerhoff, J. Am. Chem. Soc., 1968,
90, 7364; (b) A. Streitwieser, U. Mu¨ller-Westerhoff, G. Sonnichs,
F. Mares, D. G. Morrell, K. O. Hodgson and C. A. Harmon, J. Am.
Chem. Soc., 1973, 95, 8644.
2 R. D. Fischer, Theor. Chim. Acta, 1963, 1, 418.
3 D. Seyferth, Organometallics, 2004, 23, 3562.
4 C. J. Burns and B. E. Bursten, Comments Inorg. Chem., 1989, 9, 61.
5 M. D. Walter, C. H. Booth, W. W. Lukens and R. A. Andersen,
Organometallics, 2009, 28, 698.
6 J. S. Parry, F. G. N. Cloke, S. J. Goles and M. B. Hursthouse, J. Am.
Chem. Soc., 1999, 121, 6867.
´
7 (a) T. R. Boussie, D. C. Eisenberg, J. Rigsbee, A. Streitwieser and
A. Zalkin, Organometallics, 1991, 10, 1922; (b) D. G. Karraker and
J. A. Stone, J. Am. Chem. Soc., 1974, 96, 6885.
8 A. Streitwieser, S. A. Kinsley, C. H. Jenson and J. T. Rigsbee,
Organometallics, 2004, 23, 5169.
9 C. Levanda and A. Streitwieser, Inorg. Chem., 1981, 20, 656.
10 W. J. Liu, M. Dolg and P. Fulde, Inorg. Chem., 1998, 37, 1067.
11 (a) A. H. H. Chang and R. M. Pitzer, J. Am. Chem. Soc., 1989, 111, 2500;
The Th–H1 distances (2.323(7) Å in 6[Na*(THF)2] (2.26 and 2.34 Å
in 6[K*]) can be compared to values reported in the literature, which
vary within a large range depending on whether the hydride is
terminal or bridging [1.99(5)–2.6(1) Å]. The present values are
however close to those in (C5Me5)3ThH (2.33(13) Å)18b and in
[(C5Me5)2ThH2]2 [2.03(1) (terminal); 2.29(3) (bridging) Å].17
In summary, comparison of the reactivity of the actinocenes
(Cot)2An towards the addition of a variety of anions evidences
distinct chemical behaviour between Th and U. Both 1 and 2 trap
the cyanide ion, but only thorocene reacts with the weaker ligands
´
´
´
´
(b) D. Paez-Hernandez, J. A. Murillo-Lopez and R. Arratia-Perez, J. Phys.
Chem. A, 2011, 115, 8997; (c) D. Paez-Hernandez, J. A. Murillo-Lopez
and R. Arratia-Perez, J. Phys. Chem. A, 2011, 115, 8997; (d) F. Ferraro,
C. A. Barboza and R. Arratia-Perez, J. Phys. Chem. A, 2012, 116, 4170;
(e) A. Moritz and M. Dolg, Chem. Phys., 2007, 337, 48; ( f ) A. Kerridge
and N. Kaltsoyannis, J. Phys. Chem. A, 2009, 113, 8737; (g) A. Kerridge,
R. Coates and N. Kaltsoyannis, J. Phys. Chem. A, 2009, 113, 2896; (h) J. Li
and B. E. Bursten, J. Am. Chem. Soc., 1998, 120, 11456.
12 (a) A. Streitwieser and N. Yoshida, J. Am. Chem. Soc., 1969, 91, 7528;
(b) A. Avdeef, K. N. Raymond, K. O. Hodgson and A. Zalkin, Inorg.
Chem., 1972, 11, 1083.
N3 and HÀ. The monometallic complexes [(Cot)2Th(X)]À are
À
´
13 J. C. Berthet, P. Thuery and M. Ephritikhine, Organometallics, 2008,
27, 1664.
obtained with CNÀ and N3À, while an unexpected bimetallic
complex is formed with HÀ. All these species show a unique
bent thorocene fragment. These results clearly dismiss the
long-held belief that actinocenes are poorly reactive species
and are devoid of any coordinating ability, and they demon-
strate that at least one attainable coordination site remains on
the actinide centre. That thorocene is much more reactive than
uranocene is also clearly evidenced here despite the lower Lewis
basicity of the Th4+ ion.23 This may originate from the reputedly
less covalent Cot–Th bonding which favours the mobility of
Cot2À on the metal centre and makes easier the bending of the
(Cot)2Th fragment upon interaction of a ligand.
´
´
14 J. Maynadie, J. C. Berthet, P. Thuery and M. Ephritikhine, Organo-
metallics, 2007, 26, 2623.
15 (a) J. C. Berthet, M. Lance, M. Nierlich, J. Vigner and M. Ephritikhine,
J. Organomet. Chem., 1991, 420, C9; (b) S. Fortier, G. Wu and T. W. Hayton,
´
´
Dalton Trans., 2010, 39, 352; (c) O. Benaud, J. C. Berthet, P. Thuery and
M. Ephritikhine, Inorg. Chem., 2011, 50, 12204; (d) M.-J. Crawford, A. Ellern
and P. Mayer, Angew. Chem., Int. Ed., 2005, 44, 7874; (e) W. J. Evans,
K. A. Miller, J. W. Ziller and J. Greaves, Inorg. Chem., 2007, 46, 8008.
´
16 J. C. Berthet, C. Villiers, J. F. Le Marechal, B. Delavaux-Nicot, M. Lance,
M. Nierlich, J. Vigner and M. Ephritikhine, J. Organomet. Chem, 1992,
440, 53.
17 W. J. Evans, G. W. Nyce, S. A. Kozimor, J. W. Ziller, A. G. DiPasquale
and A. L. J. Rheingold, Organometallics, 2007, 26, 3568.
18 (a) M. Weydert, J. G. Brennan, R. A. Andersen and R. G. Bergman,
Organometallics, 1995, 14, 3942; (b) W. J. Evans, K. A. Miller and
J. W. Ziller, Organometallics, 2001, 20, 5489; (c) W. Ren, N. Zhao,
L. Chen, H. Song and G. Zi, Inorg. Chem. Commun., 2011, 14, 1838.
19 (a) G. Zi, L. Jia, E. L. Werkema, M. D. Walter, J. P. Gottfriedsen and
This work was financially supported by CEA, CNRS and the
´
RBPCH program of the Direction de l’Energie Nucleaire (CEA).
´
R. A. Andersen, Organometallics, 2005, 24, 4251; (b) J. Maynadie,
´
J. C. Berthet, P. Thuery and M. Ephritikhine, Organometallics, 2007,
Notes and references
´
26, 5485; (c) J. C. Berthet, P. Thuery and M. Ephritikhine, Chem.
‡ Crystallographic data. Crystal data for 4: C29H40NNaO6Th, M = 753.65,
Commun., 2007, 604 and references therein.
orthorhombic, space group Pna21, a = 16.9230(6), b = 12.8262(4), c = 20 W. Ren, G. Zi and M. D. Walter, Organometallics, 2012, 31, 672.
13.4858(4) Å, V = 2927.20(16) Å3, Z = 4. Refinement of 344 parameters on 21 (a) C. Le Vanda, J. P. Solar and A. Streitwieser, J. Am. Chem. Soc., 1980,
8618 independent reflections out of 68 974 measured reflections (Rint
=
,
102, 2128; (b) T. M. Gilbert, R. R. Ryan and A. P. Sattelberger, Organo-
0.022) led to R1 = 0.027, wR2 = 0.064, Drmin = À1.07, Drmax = 0.95 e ÅÀ3
metallics, 1988, 7, 2514; (c) T. R. Boussie, R. M. Moore, A. Streitwieser,
´
Flack parameter 0.487(7). Crystal data for 5: C28H40N3NaO6Th, M =
769.66, monoclinic, space group P21/c, a = 12.7844(4), b = 19.3693(6),
c = 13.0254(4) Å, b = 115.214(2)1, V = 2918.11(16) Å3, Z = 4. Refinement
of 352 parameters on 8909 independent reflections out of 123 806
measured reflections (Rint = 0.034) led to R1 = 0.035, wR2 = 0.091,
A. Zalkin, J. Brennan and K. A. Smith, Organometallics, 1990, 9, 2010;
(d) J. C. Berthet and M. Ephritikhine, Chem. Commun., 1993, 1566;
´
(e) J. C. Berthet, J. F. Le Marechal and M. Ephritikhine, J. Organomet.
Chem., 1994, 480, 155; ( f ) C. Boisson, J. C. Berthet, M. Ephritikhine,
M. Lance and M. Nierlich, J. Organomet. Chem., 1996, 522, 249.
Drmin = À1.43, Drmax = 2.70 e ÅÀ3. Crystal data for 6[Na*(THF)2]: 22 R. D. Shannon, Acta Crystallogr., Sect. A, 1976, 32, 751.
%
C52H73NaO8Th2,
M
=
1313.17, tetragonal, space group P421c, 23 D. D. Schnaars and R. E. Wilson, Inorg. Chem., 2012, 51, 9481.
c
This journal is The Royal Society of Chemistry 2013
Chem. Commun.