L-Proline-Derived Tertiary Amino Alcohols
Letters in Organic Chemistry, 2011, Vol. 8, No. 8
585
[3]
[4]
Oguni, N.; Omi, T. Enantioselective addition of diethylzinc to
benzaldehyde catalyzed by a small amount of chiral 2-amino-1-
alcohols. Tetrahedron Lett., 1984, 25, 2823–2824.
8.0Hz, 2H), 4.57 (t, J = 6.4Hz, 1H), 1.80–1.68 (m, 2H), 0.91
(t, J = 7.2 Hz, 3H).
Reviews on the asymmetric alkylation, some selected examples: (a)
Noyori, R.; Kitamura, M. Enantioselective addition of organomet-
allic reagents to carbonyl compounds: chirality transfer, multiplica-
tion, and amplification. Angew. Chem., Int. Ed. Engl., 1991, 30,
49–69; (b) Soai, K.; Niwa, S. Chem. Rev. 1992, 92, 833–856; (c)
Pu, L.; Yu, H. B. Enantioselective addition of organozinc reagents
to aldehydes. Chem. Rev., 2001, 101, 757–824; (d) Knochel, P.;
Singer, R. D. Catalytic asymmetric organozinc additions to
carbonyl compounds. Chem. Rev., 1993, 93, 2117–2188; (e)
Hatano, M.; Miyamoto, T.; Ishihara, K. Preparation and reactions
of polyfunctional organozinc reagents in organic synthesis. Curr.
Org. Chem., 2007, 11, 127–157; (f) Hatano, M.; Ishihara, K.
Recent progress in selective additions of organometal reagents to
carbonyl compounds. Chem. Res., 2008, 8, 143–155; (g) Hatano,
M.; Ishihara, K. Recent progress in the catalytic synthesis of
tertiary alcohols from ketones with organometallic reagents.
Synthesis, 2008, 1647–1675.
1-phenylpentan-3-ol
72% yield. 61% ee determined by HPLC analysis
(Chiralcel AD-H column, IPA: hexane = 3: 97). 1.0 mL/min,
Retention time: tmajor = 11.69 min, tminor = 10.93 min. H1
NMR (CDCl3, TMS): ꢀ 7.30–7.25 (m, 2H), 7.21–7.16 (m,
3H), 3.55 (ddd, J = 4.5 Hz, 8.0 Hz, 12.2 Hz, 1H), 2.80 (ddd,
1H, J = 5.8Hz, 9.8 Hz, 14.1 Hz, 1H), 2.67 (ddd, 1H, J = 6.7
Hz, 9.7 Hz, 13.8 Hz, 1H), 1.84–1.76 (m, 2H), 1.56–1.41 (m,
3H), 0.94 (t, J = 7.2 Hz, 3H).
1-phenylpropan-1-ol
100% yield. 46% ee determined by HPLC analysis
(Chiralcel OD-H column, IPA: hexane = 3: 97). 0.5 mL/min,
Retention time: tmajor = 24.90 min, tminor = 21.35 min. H1
NMR (CDCl3, TMS): ꢀ 7.35–7.27 (m, 5H), 4.59 (t, J = 6.8
Hz,1H), 1.87 (s, 1H), 1.86–1.71 (m, 2H), 0.91 (t, J = 7.2 Hz,
3H).
[5]
Ye, M.; Logaraj, S.; Jackman, L. M.; Hillegass, K.; Hirsh, K. A.;
Bollinger, A. M.; Grosz, A. L.; Mani, V. Enantioselective addition
of alkyllithium reagents to aldehydes induced by chiral lithium
alkoxides. Tetrahedron, 1994, 50, 6109–6116.
[6]
[7]
Frantz, D.E.; Fassler, R.; Carreira, E. M. Facile enantioselective
synthesis of propargylic alcohols by direct addition of terminal al-
kynes to aldehydes. J. Am. Chem. Soc., 2000, 122, 1806–1807.
Zhu, H. J.; Jiang, J. X.; Saebo, S.; Pittman, Jr C. U. Chiral ligands
derived from abrine 8. An experimental and theoretical study of
free ligand conformational preferences and the addition of dieth-
ylzinc to benzaldehyde. J. Org. Chem., 2005, 70, 261–267.
Lipshutz, B. H.; Shin, Y. L. Polystyrene-bound cyclo-BINOLs:
new heterogeneous ligands for asymmetric catalysis. Tetrahedron
Lett., 2000, 41, 9515–9521.
Dahman, S.; Brase, S. Planar and central chiral
[2.2]paracyclophane-based N,O-ligands as highly active catalysts in
the diethylzinc addition to aldehydes. Chem. Commun., 2002, 26–
27.
1-(2-chlorophenyl)propan-1-ol
54% yield. 68% ee determined by HPLC analysis
(Chiralcel OD-H column, IPA: hexane = 5: 95). 0.5 mL/min,
Retention time: tmajor = 13.51 min, tminor = 19.34 min. H1
NMR (CDCl3, TMS): ꢀ 7.56–7.20 (m, 4H), 5.07 (dd, J = 4.9
Hz, 7.5 Hz, 1H), 1.99 (s, 1H), 1.83–1.72 (m, 2H), 0.99 (t, J =
7.2 Hz, 3H).
[8]
[9]
1-(3-fluorophenyl)propan-1-ol
100% yield. 61% ee determined by HPLC analysis
(Chiralcel AD-H column, IPA: hexane = 3: 97). 1.0 mL/min,
Retention time: tmajor = 11.69 min, tminor = 10.93 min. H1
NMR (CDCl3, TMS): ꢀ 7.32–7.27 (m, 1H), 7.10–7.05 (m,
2H), 6.95 (dt, J = 8.5 Hz, 2.4 Hz, 1H), 4.60 (t, J = 6.4
Hz,1H), 1.91 (s, 1H), 1.81–1.72 (m, 2H), 0.92 (t, J = 7.2 Hz,
3H).
[10]
Pini, D.; Mastantuono, A.; Uccello-Barretta, G.; Iuliano, A.; Salva-
dori, P. Addition of diethylzinc to aryl aldehydes catalyzed by
(1S,3S)-N,N1-bis[benzyl]-1,3-diphenyl-1,3-propanediamine and its
dilithium salt: a mechanistic rationale investigation. Tetrahedron,
1993, 49, 9613–9624.
[11]
[12]
[13]
Rosini, C.; Franzini, L.; Iuliano, A.; Pini, D.; Salvadori, P.
Asymmetric alkylation of aromatic aldehydes by diethyl zinc in the
presence
of
(S)-N,N,Nꢀ,Nꢀ,-tetramethyl-2,2ꢀ-diamino-1,1ꢀ-
binaphthyl. Tetrahedron Asymmetry, 1991, 2, 363–366.
4-(1-hydroxypropyl)benzonitrile
Paquette, L. A.; Zhou, R. J. Synthesis of enantiopure C2-symmetric
VERDI disulfonamides and their application to the catalytic enan-
tioselective addition of diethylzinc to aromatic and aliphatic alde-
hydes. J. Org. Chem., 1999, 64, 7929–7934.
Yoshioka, M.; Kawakita, T.; Ohno, M. Asymmetric induction
catalyzed by conjugate bases of chiral proton acids as ligands:
Enantioselective addition of dialkylzinc-orthotitanate complex to
benzaldehyde with catalytic ability of a remarkable high order. Te-
trahedron Lett., 1989, 30, 1657–1660.
80% yield. 98% ee determined by HPLC analysis
(Chiralcel OD-H column, IPA: hexane = 15: 85). 0.5
mL/min, Retention time: tmajor = 12.11 min, tminor = 15.62
min. H1 NMR (CDCl3, TMS): ꢀ 7.63 (d, J = 8.0 Hz, 2H),
7.45 (d, J = 8.0 Hz, 2H), 4.69 (t, J = 6.4 Hz,1H), 2.13 (s,
1H), 1.83–1.71 (m, 2H), 0.93 (t, J = 7.6 Hz,1H).
[14]
[15]
Cernerud, M.; Skrinning, A.; Bergere, I.; Moberg, C.
Bis(ethylsulfonamide)amines via nucleophilic ring-opening of
chiral aziridines. Application to Ti-mediated addition of diethylzinc
to benzaldehyde. Tetrahedron Asymmetry, 1997, 8, 3437–3441.
Pritchett, S.; Woodmansee, D. H.; Gantzel, P.; Walsh, P. J.
Synthesis and crystal structures of bis(sulfonamido) Titanium
ACKNOWLEDGEMENTS
We are grateful to the grants from the Natural Science
Foundation of Higher Education Institutions of Jiangsu Prov-
ince, China (No. 10KJB150018) and (No. 10KJA430 050)
and Qin Lan Project in Jiangsu Province (NO. 08QLT001)
and the Special Presidential Foundation of Xuzhou Medical
College (2010KJZ15) for financial support.
bis(alkoxide) complexes:
mechanistic implications in the
bis(sulfonamide) catalyzed asymmetric addition of dialkylzinc rea-
gents to aldehydes. J. Am. Chem. Soc., 1998, 120, 6423–6424.
Takahashi, H.; Yoshioka, M.; Kobayashi, S. Catalytic enantioselec-
tive reactions using C2-symmetric disulfonamides as chiral ligands.
J. Syn. Org. Chem. Jpn., 1997, 55, 714–724.
(a) Zhang, F. Y.; Yip, C. W.; Cao, R.; Chan, A. S. C.
Enantioselective addition of diethylzinc to aromatic aldehydes cata-
lyzed by Ti(BINOL) complex. Tetrahedron Asymmetry, 1997, 8,
585–589; (b) Zhang, F. Y.; Chan, A. S. C. Asymmetric catalytic al-
kylation of aldehydes with diethylzinc using a chiral binaphthol-
Titanium complex. Tetrahedron Lett., 1997, 38, 6233–6236.
Rosini, C.; Franzini, L.; Pini, D.; Salvadori, P. Enantioselective
alkylation of prochiral aldehydes by diethylzinc promoted by (S,
[16]
[17]
REFERENCES
[1]
Noyori, R. Asymmetric Catalysis in Organic Synthesis; Wiley:
New York, 1994.
[2]
Soai, K.; Shibata, T. In Comprehensive Asymmetric Catalysis;
Jacobsen, E. N.; Pfaltz, A.; Yamamoto, H.; Eds.; Springer: Berlin,
Germany, 1999; Vol. 2, pp. 911–922.
[18]