and the strongly dimerized [Ni1]- moieties are in the singlet
state, even at 330 K. The cmT value is 0.80 emu mol-1 K at
35 K, corresponding to the expected value (0.75 emu mol-1 K)
for one LS iron(II) ions and two magnetically isolated radicals.
The sudden decrease of cmT values below 25 K is attributed
to antiferromagnetic interactions between radicals (Fig. S5†). It
should be noted that the spin transition gradually occurred in the
temperature range of 170–300 K.
The temperature dependence of electrical resistivity was mea-
sured on a single crystal of 2 by the four-probe dc method
(Fig. 3). The resistivities of 2 along crystallographic c axis showed
semiconducting behavior above 280 K and the conductivity at
room temperature was estimated to be 2.6 ¥ 10-3 S cm-1. Although
the conducting pathway in 2 is not clear, the herringbone-
like 2-D structure along bc plane might be responsible for the
semiconducting behavior. As the temperature was lowered, an
anomaly was observed in the temperature range of 160–280 K,
which corresponds well to the temperature range for the spin
transition of iron centers. The activation energy below and above
the anomaly were 129 meV (126–160 K) and 119 meV (280–
360 K), respectively. 2 shows SCO with relatively large structural
modification depending on the temperatures, and the modulation
of the electric conductivity might be, therefore, ascribable to the
chemical pressure induced by SCO in the iron(II) core.
In summary, the novel iron(II) complexes with TTF moieties
linked by ethylene bonds were presented. 1 showed reversible
redox behavior and thermal SCO. The galvanostatic oxidation
of [Fe(dppTTF)2]2+ with [Ni(mnt)2]- anions yielded the oxidized
complex 2. Magnetic and resistivity measurements suggested
that 2 showed an interaction of spin transition and conducting
behavior. Detailed variable temperature structural analyses and
photomagnetic experiments are currently underway to clarify
the mechanism of conductivity and to explore the switching of
conductivity by light irradiation.
Crystal data for 1 at 120 K: C89H74B2Fe1N11O2.5S8, monoclinic P21/c,
◦
˚
˚
˚
a = 21.330(2) A, b = 22.146(2) A, c = 17.307(2) A, b = 95.123(2) , V =
3
-3
˚
8143(1) A , Z = 4, dc. = 1.364 Mg m , 45908 reflections measured, 15968
unique reflections (Rint = 0.1533). Final R1 = 0.1026 and wR2 = 0.2129 (I
¯
> 2sI). Crystal data for 2 at 200 K: C61H31B1F4Fe1N19Ni2S16, triclinic P1,
◦
˚
˚
˚
a = 13.688(2) A, b = 14.900(2) A, c = 18.364(2) A, a = 89.572(3) , b =
◦
◦
3
-3
˚
83.176(3) , g = 74.454(3) , V = 3581.9(7) A , Z = 2, dc. = 1.672 Mg m ,
16246 reflections measured, 10251 unique reflections (Rint = 0.0629). Final
¯
R1 = 0.0874 and wR2 = 0.2084 (I > 2sI). at 300 K: triclinic P1, a = 13.828(2)
◦
◦
˚
˚
˚
A, b = 15◦.156(2) A, c = 18.255(3) A, a = 89.722(2) , b = 83.344(2) , g =
3
-3
˚
74.195(2) , V = 3654.8(9) A , Z = 2, dc. = 1.638 Mg m , 14934 reflections
measured, 10226 unique reflections (Rint = 0.0198). Final R1 = 0.0779 and
wR2 = 0.2198 (I > 2sI).
1 (a) E. Coronado and P. Day, Chem. Rev., 2004, 104, 5419; (b) E.
Coronado, E. Coronado and J. R. Gala´n-Mascaro´s, J. Mater. Chem.,
2005, 15, 66; (c) L. Ouahab, Chem. Mater., 1997, 9, 1909; (d) H. Hiraga,
H. Miyasaka, K. Nakata, T. Kajiwara, S. Takaishi, Y. Oshima, H. Nojiri
and M. Yamashita, Inorg. Chem., 2007, 46, 9661; (e) A. Kobayashi, E.
Fujiwara and H. Kobayashi, Chem. Rev., 2004, 104, 5243; (f) L. Ouahab
and T. Enoki, Eur. J. Inorg. Chem., 2004, 933.
2 (a) E. Coronado, J. R. Gala´n-Mascaro´s, C. J. Comez-Garc´ıa and V.
N. Laukhin, Nature, 2000, 408, 447; (b) S. Uji, H. Shinagawa, T.
Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, H.
Tanaka and H. Kobayashi, Nature, 2001, 410, 908.
3 P. Gu¨tlich and H. A. Goodwin, (ed.), (Spin Crossover in Transition
Metal Compounds I–IIISpringer: New York, 2004m Topics in Current
Chemistry 233–235.
4 (a) K. Murata, S. Kagoshima, S. Yasuzuka, H. Yoshino and R. Kondo,
J. Phys. Soc. Jpn., 2006, 75, 051015; (b) S. Hu¨nig, K. Sinzger, M. Jopp,
D. Bauer, W. Bietsch, J. U. von Schu¨tz and H. C. Wolf, Angew. Chem.,
Int. Ed. Engl., 1992, 31, 859; (c) S. Aonuma, H. Sawa, R. Kato and H.
Kobayashi, Chem. Lett., 1993, 513.
5 (a) K. Takahashi, H.-B. Cui, Y. Okano, H. Kobayashi, H. Mori, H.
Tajima, Y. Einaga and O. Sato, J. Am. Chem. Soc., 2008, 130, 6688;
(b) S. Dorbes, L. Lalade, J. A. Real and C. Faulmann, Chem. Commun.,
2005, 69; (c) C. Faulmann, S. Dorbes, B. G. Bonneval, G. Molna´r, A.
Bousseksou, C. J. Comez-Garc´ıa, E. Coronado and L. Valade, Eur. J.
Inorg. Chem., 2005, 3261; (d) C. Faulmann, K. Jacob, S. Dorbes, S.
Lampert, I. Malfant, M.-L. Doublet, L. Valade and J. A. Real, Inorg.
Chem., 2007, 46, 8548; (e) L. C. J. Pereira, A. M. Gulamhussen, J. C.
Dias, I. C. Santos and M. Almeida, Inorg. Chim. Acta, 2007, 360, 3887.
6 (a) K. Herve´, S.-X. Liu, O. Cador, S. Golhen, Y. Le Gal, A. Bousseksou,
H. Stoeckli-Evans, S. Decurtins and L. Ouahab, Eur. J. Inorg. Chem.,
2006, 3498; (b) B. W. Smucker and K. R. Dunbar, J. Chem. Soc., Dalton
Trans., 2000, 1309; (c) T. Devic, D. Rondeau, Y. Sahin, E. Levillain,
R. Cle´rac, P. Batail and N. Avarvari, Dalton Trans., 2006, 1331; (d) W.
Lu, Y. Zhang, J. Dai, Q.-Y. Zhu, G.-Q. Bian and D.-Q. Zhang, Eur. J.
Inorg. Chem., 2006, 1629; (e) S. Ichikawa, S. Kimura, K. Takahashi, H.
Mori, G. Yoshida, Y. Manabe, M. Matsuda, H. Tajima and J. Yamaura,
Inorg. Chem., 2008, 47, 4140; (f) S.-X. Liu, C. Ambrus, S. Dolder, A.
Neels and S. Decurtins, Inorg. Chem., 2006, 45, 9622; (g) N. Avarvari
and M. Fourmigue´, Chem. Commun., 2004, 1300; (h) F. Pointillart, T.
Cauchy, Y. Le Gai, S. Golhen, O. Cador and L. Ouahab, Inorg. Chem.,
2010, 49, 1947; (i) F. Setili, L. Ouahab, S. Golhen, Y. Yoshida and G.
Saito, Inorg. Chem., 2003, 42, 1791; (j) V. Mart´ınez, A. B. Gaspar, M.
C. Mun˜oz, R. Ballesteros, N. Ortega-Villar, V. M. Ugalde-Sald´ıvar, R.
Moreno-Esparza and J. A. Real, Eur. J. Inorg. Chem., 2009, 303.
7 (a) C. Carbonera, J. S. Costa, V. A. Money, J. Elha¨ık, J. A. K. Howard,
M. A. Halcrow and J.-F. Le´tard, Dalton Trans., 2006, 3058; (b) M. A.
Halcrow, Coord. Chem. Rev., 2005, 249, 2880; (c) M. Nihei, L. Han
and H. Oshio, J. Am. Chem. Soc., 2007, 129, 5312; (d) C. Rajadurai, F.
Schramm, O. Fuhr and M. Ruben, Eur. J. Inorg. Chem., 2008, 2649.
8 P. Guionneau, M. Marchivie, G. Bravic, J.-F. Le´tard and D. Chasseau,
J. Mater. Chem., 2002, 12, 2546.
Acknowledgements
This work was supported by a Grant-in-Aid for Scientific Research
on Innovative Areas (“Coordination Programming” Area 2107,
No. 21108006) from MEXT, Japan, and the Kurata Memorial
Hitachi Science and Technology Foundation.
Notes and references
‡ Synthesis of 1: The reaction of Fe(BF4)2·6H2O (8 mg, 0.022 mmol) with
dppTTF (20 mg, 0.045 mmol) in MeNO2 (5 mL) gave a dark purple
solution. Na(BPh4) (80 mg, 0.23 mmol) was added to the reaction mixture,
and the resulting solution was filtered. Dark purple crystals of 1 were
obtained by slow diffusion of dietyl ether into the filtrate. Anal. Calcd.
for dried 1 (C87H69B2Fe1N11O2S8) : C, 62.55; H, 4.40; N, 9.22%. Found: C,
62.47; H, 4.28; N, 9.14%.
Synthesis of 2: The reaction of Fe(BF4)2·6H2O (8 mg, 0.022 mmol) with
dppTTF (20 mg, 0.045 mmol) in PhCN (14 mL) gave a dark purple
solution. (Bu4N)[Ni(mnt)2] (40 mg, 0.07 mmol) and (Bu4N)BF4 (147
mg, 0.45 mmol) were added to the reaction mixture, and galvanostatic
oxidation (I = 5 mA) of the resulting solution gave dark brown crystals of
2. Anal. Calcd. for C61H35B1Fe1N19Ni2O2S16: C, 39.84; H, 1.92; N, 14.47%.
Found: C, 40.10; H, 1.95; N, 14.18%.
9 R. Adnreu, I. Malfant, P. G. Lacroix and P. Cassoux, Eur. J. Org. Chem.,
2000, 737.
10 E. Ribera, C. Rovira, J. Veciana, J. Tarre´s, E. Canadell, R. Rousseau,
E. Molins, M. Mas, J.-P. Schoeffel, J.-P. Pouget, J. Morgado, R. T.
Henriques and M. Almeida, Chem.–Eur. J., 1999, 5, 2025.
2156 | Dalton Trans., 2011, 40, 2154–2156
This journal is
The Royal Society of Chemistry 2011
©