The Journal of Organic Chemistry
ARTICLE
(s, 8H), 2.62 (s, 12H), 2.61 (s, 12H), 1.28 (s, 12H), -3.62 (s, 12H, CH3
of coordinated TMEDA), -5.03 (s, 4H, CH2 of coordinated TMEDA)
’ ACKNOWLEDGMENT
L.P.H.-E. and P.B. are grateful for funding from MICINN
(CTQ2008-00222/BQU, Consolider Ingenio 2010 Grant CSD2006-
0003), DURSI (2009SGR6868) and ICIQ Foundation. L.E. and
J.R.P. gratefully acknowledge generous support from the U.S.
National Science Foundation, grant DMR-0809129.
Synthesis of Diacetylenic Bisporphyrin (3 Zn2). The reaction crude
3
containing the acetylenic bisporphyrin coordinated with TMEDA,
TMEDA⊂3 Zn2, obtained above was dissolved in a minimum amount
3
of CH2Cl2 and treated with few drops of a solution of HCl 4 N indioxane.
The resulting green mixture was stirred for 30 min and diluted with
additional CH2Cl2. The organic phase was washed with water, dried,
filtered, and evaporated to dryness. The obtained crude was purified by
preparative GPC (toluene column, flow 6 mL/min, injections 20 mg/
mL), collecting the second peak eluting at 7.31 min that corresponds to
’ REFERENCES
(1) Sun, Y. P.; Drovetskaya, T.; Bolskar, R. D.; Bau, R.; Boyd,
P. D. W.; Reed, C. A. J. Org. Chem. 1997, 62, 3642–3649.
(2) Boyd, P. D. W.; Hodgson, M. C.; Rickard, C. E. F.; Oliver, A. G.;
Chaker, L.; Brothers, P. J.; Bolskar, R. D.; Tham, F. S.; Reed, C. A. J. Am.
Chem. Soc. 1999, 121, 10487–10495.
(3) Tashiro, K.; Aida, T. Chem. Soc. Rev. 2007, 36, 189–197.
(4) Nobukuni, H.; Shimazaki, Y.; Uno, H.; Naruta, Y.; Ohkubo, K.;
Kojima, T.; Fukuzumi, S.; Seki, S.; Sakai, H.; Hasobe, T.; Tani, F. Chem.—
Eur. J. 2010, 16, 11611–11623.
(5) Zheng, J. Y.; Tashiro, K.; Hirabayashi, Y.; Kinbara, K.; Saigo, K.;
Aida, T.; Sakamoto, S.; Yamaguchi, K. Angew. Chem., Int. Ed. 2001,
40, 1858–1861.
(6) Perez, E. M.; Martin, N. Pure Appl. Chem. 2010, 82, 523–533.
(7) Perez, E. M.; Martin, N. Chem. Soc. Rev. 2008, 37, 1512–1519.
(8) Elliott, B.; Yu, L.; Echegoyen, L. J. Am. Chem. Soc. 2005,
127, 10885–10888.
(9) Tashiro, K.; Aida, T.; Zheng, J. Y.; Kinbara, K.; Saigo, K.;
Sakamoto, S.; Yamaguchi, K. J. Am. Chem. Soc. 1999, 121, 9477–9478.
(10) Takahashi, O.; Kohno, Y.; Nishio, M. Chem. Rev. 2010,
110, 6049–6076.
(11) Vaijayanthimala, G.; Krishnan, V.; Mandal, S. K. J. Chem. Sci.
(Bangalore, India) 2008, 120, 115–129.
(12) Lee, C. H.; Lindsey, J. S. Tetrahedron 1994, 50, 11427–11440.
(13) Littler, B. J.; Ciringh, Y.; Lindsey, J. S. J. Org. Chem. 1999,
64, 2864–2872.
(14) Anderson, S.; Anderson, H. L.; Sanders, J. K. M. J. Chem. Soc.,
Perkin Trans. 1995, 1, 2247–2254.
the pure diacetylenic bisporphyrin 3 H4 (0.180 g, 62%). A solution of 98
3
mg (0.061 mmol) of 3 H4 in 36 mL of a mixture of CH2Cl2/ CH3OH
3
(3:1) was treated with 0.40 g (1.217 mmol) of Zn(OAc)2. The reaction
mixture was covered with aluminum foil to protect it from light and
stirred at room temperature overnight. The reaction can be monitored
using alumina TLC plates and CH2Cl2/hexane (1/1) as eluent. At the
end of the reaction, the solvent was evaporated and 3 Zn2 was obtained
3
as a purple solid (62 mg, 58.6%) after purification of the crude by flash
chromatography on neutral aluminum oxide using a gradient of CH2Cl2/
THF (100:0 to 90:10) as eluent. 1H NMR (400.1 MHz, CDCl3, 25 ꢀC) δ
(ppm) 8.80 (d, 8H, J = 4.74 Hz, H2), 8.49 (d, 8H, J = 4.74 Hz, H1), 7.81
(d, 4H, J = 7.30 Hz, H4), 7.66 (s, 4H, H3), 7.61 (t, 4H, J = 7.30 Hz, H5),
7.33 (dd, 4H, J = 8.51 and 2.43 Hz, H6), 7.18 (s, 4H, H7), 6.79 (s, 4H,
H8), 4.78 (s, 8H, H9), 2.48 (s, 12H, H10), 1.77 (s, 12H, H11), 0.76
(s, 12H, H12), see Figure S4 for proton assignments; HR-MS (MALDI)
m/z calcd for C112H84N8O4Zn2 (Mþ) 1732.5193, found 1732.5244
(3 ppm); UV-vis (toluene) λmax (ε, M-1 cm-1) 418 (789190.67).
Synthesis of Bisporphyrin Cyclic Dimer (4 Zn2). To a 10 mL THF
3
solution containing 38 mg of 3 Zn2 (0.023 mmol) was added 14 mg of
3
Pd/C suspended previously in 4 mL of THF. The obtained suspension
was stirred under H2 at 2.5 bar during 15 h. The progress of the reaction
was monitored using silica TLC plates and CH2Cl2/hexane (1/1) as
eluent. After this time, the reaction was filtered over Celite to remove the
catalyst and the organic solvent evaporated in “vacuo”. The solid reaction
crude was purified by column chromatography on neutral alumina using
(15) Golubchikov, O. A.; Mamardashvili, N. Z.; Semeikin, A. S. Zh.
Org. Khim. 1993, 29, 2445–2452.
CH2Cl2 as eluent to yield 4 Zn2 as a purple solid (20 mg, 55%). 1H NMR
3
(16) Mecozzi, S.; Rebek, J. Chem.—Eur. J. 1998, 4, 1016–1022.
(17) Ouchi, A.; Tashiro, K.; Yamaguchi, K.; Tsuchiya, T.; Akasaka,
T.; Aida, T. Angew. Chem., Int. Ed. 2006, 45, 3542–3546.
(19) Stevenson, S.; Lee, H. M.; Olmstead, M. M.; Kozikowski, C.;
Stevenson, P.; Balch, A. L. Chem.—Eur. J. 2002, 8, 4528–4535.
(20) Tashiro, K.; Hirabayashi, Y.; Aida, T.; Saigo, K.; Fujiwara, K.;
Komatsu, K.; Sakamoto, S.; Yamaguchi, K. J. Am. Chem. Soc. 2002,
124, 12086–12087.
(400.1 MHz, CDCl3, 25 ꢀC) δ (ppm) 8.77 (d, 8H, J = 4.67 Hz, H2), 8.62
(d, 8H, J = 4.67 Hz, H1), 7.79 (d, 4H, J = 7.27 Hz, H4), 7.58 (t, 4H, J = 7.27
Hz, H5), 7.48 (s, 4H, H3), 7.26 (dd, 4H, J = 7.27 and 2.60 Hz, H6), 7.24
(s, 4H, H7), 7.17 (s, 4H, H8), 4.01 (t, 8H, J = 6.23 Hz, H9), 2.63 (s, 12H,
H12), 1.85 (m, 8H, H11), 1.72 (s, 12H, H13), 1.50 (m, 8H, H10), 1.47
(s, 12H, H14), see Figure S5 for proton assignments; HR-MS (MALDI)
m/z calcd for C112H100N8O4Zn2(Mþ) 1748.6445, found1748.6248 (11
ppm); UV-vis (toluene) λmax (ε, M-1 cm-1) 419 (772176.67).
(21) Assuming a noncooperative binding process a value for the
stability constant of the 2:1 complex can be statistically estimated as K =
Km2 = 4 ꢀ 1010 M-2. Km is the microscopic binding constant value for
’ ASSOCIATED CONTENT
the interaction of Sc3N@C80 with 4 Zn2. The Km was calculated from
3
Supporting Information. 1H NMR spectra of trans-
S
the UV-vis titration using a simple 1:1 binding model. The simulated
speciation profiles considering the formation of both 1:1 and 2:1
complexes indicate that the 2:1 complex is formed at a negligible extent
in the concentration range in which the UV-vis and fluorescence
titrations have been performed. This result supports the simplification
of the binding model used for the mathematical analysis of these titration
data. On the contray, at 0.9 mM concentration and with 0.5 equiv of
b
5 Zn, TMEDA⊂3 Zn2, 3 Zn2, and 4 Zn2. ROESY spectra of
3
3
3
3
the mixture of conformational isomers for 3 Zn2 and 4 Zn2.
3
3
General procedures used in the spectroscopic titrations and the
mathematical analysis of the data obtained. Comments on the
single crystal X-ray diffraction data and X-ray crystallographic
files (in CIF format) for the complexes TMEDA⊂3 Zn2,
Sc3N@C80 the speciation profile shows that [4 Zn2 ] = 8.5 ꢀ 10-5
,
3
3
[1:1] = 1.0 ꢀ 10-4 M, and [2:1] = 3.5 ꢀ 10-4 M and with 1 equiv
Sc3N@C80⊂3 Zn2, Sc3N@C80⊂(4 Zn2)2, and the p-xylene
3
3
[4 Zn2 ] = 1.0 ꢀ 10-6, [1:1] = 4.8 ꢀ 10-4 M, and [2:1] = 1.9 ꢀ 10-4 M.
solvate of Sc3N@C80. This material is available free of charge
3
(22) Solladie, N.; Walther, M. E.; Gross, M.; Figueira Duarte, T. M.;
Bourgogne, C.; Nierengarten, J.-F. Chem. Commun. 2003, 2412–2413.
(23) Beltranporter, A.; Beltranporter, D.; Cervilla, A.; Ramirez, J. A.
Talanta 1983, 30, 124–126.
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: pballester@iciq.es; echegoyen@utep.edu.
(24) Hernꢀandez-Eguía, L. P. Ph.D. Thesis, Universitat Rovira i
Virgili, Tarragona, 2010.
3264
dx.doi.org/10.1021/jo200154d |J. Org. Chem. 2011, 76, 3258–3265