This work was supported by the Grant-in-Aid for Scientific
Research (No. 21760619) from the Ministry of Education,
Culture, Sports, Science and Technology, Japan (MEXT).
Notes and references
1 (a) R. Kramer, Angew. Chem., Int. Ed., 1998, 37, 772; (b) A. P. de Silva,
¨
H. Q. N. Gunaratne, T. Gunnlaugsson, A. J. M. Huxley, C. P. McCoy,
J. T. Rademacher and T. E. Rice, Chem. Rev., 1997, 97, 1515.
2 (a) H.-H. Wang, L. Xue, Z.-J. Fang, G.-P. Li and H. Jiang, New J.
Chem., 2010, 34, 1239; (b) Y. Zheng, K. M. Gattas-Asfura, V. Konka
´
and R. M. Leblanc, Chem. Commun., 2002, 2350; (c) P. Grandini,
F. Mancin, P. Tecilla, P. Scrimin and U. Tonellato, Angew. Chem., Int.
Ed., 1999, 38, 3061.
3 (a) E. Ballesteros, D. Moreno, T. Go
M. Garcıa-Valverde and T. Torroba, Org. Lett., 2009, 11, 1269;
(b) R. Martınez, F. Zapata, A. Caballero, A. Espinosa, A. Tarraga
mez, T. Rodrıguez, J. Rojo,
´ ´
´
´
´
Fig. 5 Partial IR spectra of 1, 2, and 1–Cu complex.
and P. Molina, Org. Lett., 2006, 8, 3235; (c) Z.-C. Wen, R. Yang,
H. He and Y.-B. Jiang, Chem. Commun., 2006, 106.
4 (a) N. Li, Y. Xiang and A. Tong, Chem. Commun., 2010, 46, 3363;
reference compound, 2, containing an imine moiety (Fig. 1).
These suggests that the 1–Cu complex involves two imine
moieties.13 As shown in Fig. S20 (ESIw), ESR analysis of the
complex shows no signal for Cu2+, indicating that the complex
involves Cu+. These findings suggest that, as shown in
Scheme 2 and observed for related amine-containing ligands,9
the reaction of Cu2+ with two 1 molecules produces a
Cu+–Schiff base complex via an oxidative dehydrogenation
of two amine moieties by Cu2+ and O2.14 The dehydrogena-
tion of amine moieties of 1 suppresses the electron transfer
from the nitrogen atoms to the excited state BODIPY moiety1b
and results in emission enhancement (Fig. 2).
(b) J. Kova
(c) J. Kovacs, T. Rodler and A. Mokhir, Angew. Chem., Int. Ed.,
´
cs and A. Mokhir, Inorg. Chem., 2008, 47, 1880;
¨
´
2006, 45, 7815; (d) X. Qi, E. J. Jun, L. Xu, S.-J. Kim, J. S. J. Hong,
Y. J. Yoon and J. Yoon, J. Org. Chem., 2006, 71, 2881; (e) A. Mokhir
and R. Kramer, Chem. Commun., 2005, 2244; (f) M. H. Kim,
¨
H. H. Jang, S. Yi, S.-K. Chang and M. S. Han, Chem. Commun.,
2009, 4838; (g) M. Yu, M. Shi, Z. Chen, F. Li, X. Li, Y. Gao, J. Xu,
H. Yang, Z. Zhou, T. Yi and C. Huang, Chem.–Eur. J., 2008, 14,
6892; (h) V. Dujols, F. Ford and A. W. Czarnik, J. Am. Chem. Soc.,
1997, 119, 7386; (i) M.-M. Yu, Z.-X. Li, L.-H. Wei, D.-H. Wei and
M.-S. Tang, Org. Lett., 2008, 10, 5115.
5 (a) W. Lin, L. Long, B. Chen, W. Tan and W. Gao, Chem.
Commun., 2010, 46, 1311; (b) G. Ajayakumar, K. Sreenath and
K. R. Gopidas, Dalton Trans., 2009, 1180; (c) D. P. Kennedy,
C. M. Kormos and S. C. Burdette, J. Am. Chem. Soc., 2009, 131,
8578; (d) A. Senthilvelan, I.-T. Ho, K.-C. Chang, G.-H. Lee,
Y.-H. Liu and W.-S. Chung, Chem.–Eur. J., 2009, 15, 6152;
(e) J. Liu and Y. Lu, J. Am. Chem. Soc., 2007, 129, 9838.
6 (a) S. H. Mashraqui, K. Poonia, R. Betkar and M. Chandiramani,
Tetrahedron Lett., 2010, 51, 4336; (b) W. Lin, L. Yuan, W. Tan,
J. Feng and L. Long, Chem.–Eur. J., 2009, 15, 1030; (c) Q. Wu and
E. V. Anslyn, J. Am. Chem. Soc., 2004, 126, 14682.
The reference compound 2 with an imine moiety (Fig. 1)
shows a strong emission (FF = 0.19). Addition of Cu+ to 2,
however, shows almost no spectral change (Fig. S22, ESIw).
This is because 2 scarcely coordinates with Cu+ due to the low
affinity to the phenolic –OH group.15 In contrast, addition of
Cu2+ to 2 strongly quenches the emission. This is probably
due to the paramagnetic nature of Cu2+ 16
Other reference
.
7 F. R. Keene, Coord. Chem. Rev., 1999, 187, 121.
compounds 3 and 4 that do not contain –OH groups (Fig. 1)
show very weak emission enhancement upon Cu2+ addition
(Fig. S22, ESIw), indicating that the strengthened coordination
of Cu2+ with –OH is crucial for amine dehydrogenation. These
data also support the proposed mechanism (Scheme 2).
8 (a) V. G. Usatyuk, A. A. Medzhidov, A. Aydin, B. Yalchin and
R. A. Manafova, Russ. J. Coord. Chem., 2004, 30, 648; (b) A. Aidyn,
A. A. Medzhidov, P. A. Fatullaeva, S. Tashchioglu, B. Yalchin and
S. Saiyn, Russ. J. Coord. Chem., 2001, 27, 486; (c) R. Klement,
´
F. Stock, H. Elias, H. Paulus, P. Pelikan, M. Valko and M. Mazu´ r,
Polyhedron, 1999, 18, 3617.
It is noted that the Cu2+-promoted emission enhancement of
1 depends strongly on solvents. Addition of Cu2+ to 1 in water
(pH 7) containing DMSO, THF, acetone, MeOH, DMF, or
dioxane (50%) shows almost no emission enhancement. This is
probably because Cu+ species is unstable in these solvents,
although MeCN stabilizes Cu+ species.17 In addition, as shown
in Fig. S23 (ESIw), the 596 nm fluorescence does not appear in
pure MeCN, but an increase in the water content leads to an
enhancement. This is probably because water catalyzes the
Cu2+–amine redox process. Although the detailed role of water
cannot be identified at this stage, similar water effect is observed
in the dehydrogenation of an amine ligand in the Fe3+ complex
system.18 These findings suggest that both MeCN and water are
necessary for the Cu2+-induced fluorescence enhancement of 1.
In summary, we found that a BODIPY derivative, 1,
containing a simple NO bidentate ligand behaves as a fluores-
cent chemodosimeter for Cu2+. Although the detailed analysis
for the dehydrogenation mechanism still remains to be
clarified, the simple ligand design may contribute to the design
9 V. Amendola, L. Fabbrizzi, E. Mundum and P. Pallavicini, Dalton
Trans., 2003, 773.
10 D. Wang, Y. Shiraishi and T. Hirai, Tetrahedron Lett., 2010, 51, 2545.
11 A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891.
12 The long wavelength absorption is probably due to the diffraction by
the aggregates of 1–Cu complexes due to the low solubility; the
absorption disappears with a rise in temperature (Fig. S15, ESIw).
Similar spectra are observed by the aggregation of BODIPY derivatives
in aqueous media.: R. Hu, E. Lager, A. Aguilar-Aguilar, J. Liu,
J. W. Y. Lam, H. H. Y. Sung, I. D. Williams, Y. Zhong,
K. S. Wong, E. Pena-Cabrera and B. Z. Tang, J. Phys. Chem. C,
2009, 113, 15845.
13 1H NMR analysis further confirms the presence of an imine moiety
(Fig. S19, ESIw). The reaction of 1 with Cu2+ leads to a disappearance
of CH2–NH protons at d 4.45 and 4.10 ppm and a generation of new
signal at d 8.49 ppm assigned to the imine moiety.
14 O2 is important for this reaction. The fluorescence intensity of 1 in
the presence of Cu2+ measured under argon is much lower than
that measured under air (Fig. S21, ESIw).
15 K.-C. Chang, L.-Y. Luo, E. W.-G. Diau and W.-S. Chung,
Tetrahedron Lett., 2008, 49, 5013.
16 A. W. Varnes, R. B. Dodson and E. L. Wehry, J. Am. Chem. Soc.,
1972, 94, 946.
17 P. Kamau and R. B. Jordan, Inorg. Chem., 2001, 40, 3879.
18 V. L. Goedken and D. H. Busch, J. Am. Chem. Soc., 1972, 94, 7355.
of the more efficient and useful chemodosimeter for Cu2+
.
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 2673–2675 2675