4
significant inhibition in a concentration-dependent manner with
no cytotoxicity. IC50 values are found in the range from 8.53 to
17.85 µM. Moreover, this efficient and flexible synthetic route
offers opportunities to make analogues of rubrolides and may
facilitate their biological studies.
Table 1. NO production inhibitory activities of rubrolides E (1e), F (1f), R (1r), S (1s), 3"-bromo rubrolide (1fa) and their
derivatives (1ea and 1sa)
Compound
NO Productiona,b
Proliferationa
IC50 (µmol/L)
1 µmol/L
6.71 ± 1.61
10 µmol/L
6.71 ± 1.61
98.03 ± 2.50
1 µmol/L
10 µmol/L
100 ± 0.03
Medium
100 ± 0.03
LPS
98.03 ± 2.50
84.99 ± 2.77
87.15 ± 2.16
87.95 ± 0.33
86.92 ± 1.55
79.61 ± 4.11**
90.58 ± 5.67
89.03 ± 0.80
75.16 ± 5.12***
1e
1ea
54.47 ± 2.31***
66.25 ± 0.56***
45.19 ± 4.91***
57.8 ± 1.08***
61.58 ± 1.88***
68.31 ± 2.80***
53.87 ± 3.17***
44.72 ± 1.18***
103.83 ± 0.07
95.08 ± 0.03
100.55 ± 0.08
97.27 ± 0.04
98.91 ± 0.03
95.08 ± 0.03
97.81 ± 0.07
99.64 ± 0.02
108.74 ± 0.02
97.27 ± 0.05
103.28 ± 0.01
97.27 ± 0.05
97.81 ± 0.05
93.99 ± 0.04
92.35 ± 0.05
95.81 ± 0.06
10.53
13.01
8.53
1f
1fa
11.91
12.51
17.85
13.29
5.13
1r
1s
1sa
L-NMMA
a The results are reported as mean value ± SEM for n = 3. Statistical significance is based on the difference when compared with LPS-treated
groups (**P < 0.01 and ***P < 0.001).
b Inhibition is based on LPS.
R.; Yang, Z. J. Org. Chem. 2003, 68, 670. (c) Sofikiti, N.;
Montagnon, T.; Tofi, M.; Pavlakos, E.; Vassilikogiannakis, G.
Tetrahedron 2006, 62, 5308. (e) Kumar, N.; Iskander, G. PCT Int.
Appl., WO 2008040097, 2008. (f) Marchal, E.; Uriac, P.; Brunel,
Y.; Poigny, S.; PCT Int. Appl., WO 2010034827, 2010. (g)
Varejão, J. O. S.; Barbosaa, L. C. A.; Maltha, C. R. A.; Lage, M.
R.; Lanznaster, M.; Carneiro, J. W. M.; Forlani, G. Electrochim.
Acta 2014, 120, 334. (h) Varejão, J. O. S.; Barbosaa, L. C. A.;
Gabriela Álvarez Ramos, G. A.; Varejão, E. V. V.; King-Díaz, B.;
Lotina-Hennsen, B. J. Photochem. Photobiol., B 2015, 145, 11.
12. Karak, M. Acosta, J. A. M.; Barbosa, L. C. A. Boukouvalas, J. Eur.
J. Org. Chem. 2016, 3780.
13. (a) Seo, Y. H.; Damodar, K.; Kim, J. -K.; Jun, J. -G. Bioorg. Med.
Chem. Lett. 2016, 26, 1521. (b) Damodar, K.; Kim, J. -K.; Jun, J. -
G. Tetrahedron Lett. 2016, 57, 1183.
14. Kagabu, S.; Shimizu, Y.; Ito, C.; Moriya, K. Synthesis 1992, 830.
15. Schmidt, B.; Reimer, M.; Schilde, U. Eur. J. Org. Chem. 2015,
7602.
16. Fullerton, J. N.; Gilroy, D. W. Nat. Rev. Drug Discov. 2016, 15,
551.
17. Bogdan, C. Nat. Immunol. 2001, 2, 907.
18. Pacher, P.; Beckman, J. S.; Liaudet, L. Physiol. Rev. 2007, 87, 315.
19. (a) Chen, B.; Stout, R.; Campbell, W. F. FEMS Immunol. Med.
Microbiol. 1996, 14, 109. (b) Salerno, L.; Sorrenti, V.; Di
Giacomo, C.; Romeo, G.; Siracusa, M. A. Curr. Pharm. Des. 2002,
8, 177. (c) Yang, B. -Y.; Kong, L. -Y.; Wang, X. -B.; Zhang, Y.
M.; Li, R. -J.; Yang, M. -H.; Luo, J. -G. J. Nat. Prod. 2016, 79,
196.
Supplementary Material
Supplementary
data
(experimental
procedures
and
characterization data and copies of H- and 13C-NMR spectra)
1
associated with this article can be found in the online version at
References and notes
1.
(a) Rao, Y. S. Chem. Rev. 1976, 76, 625. (b) Knight, D. W.
Contemp. Org. Synth. 1994, 1, 287. (c) Negishi, E.; Kotora, M.
Tetrahedron 1997, 53, 6707. (d) Barbosaa, L. C. A.; Teixeira, R.
R.; Amarante, G. W. Curr. Org. Synth. 2015, 12, 746.
Miao, S.; Andersen, R. J. J. Org. Chem. 1991, 56, 6275.
Zhu, T.; Chen, Z.; Liu, P.; Wang, Y.; Xin, Z.; Zhu, W. J. Antibiot.
2014, 67, 315.
2.
3.
4.
5.
Sikorska, J.; Parker-Nance, S.; Davies-Coleman, M. T.; Vining, O.
B.; Sikora, A. E.; McPhail, K. L. J. Nat. Prod. 2012, 75, 1824.
(a) Pereira, U. A.; Barbosa, L. C. A.; Maltha, C. R. A.; Demuner,
A. J.; Masood, M. A.; Pimenta, A. L. Bioorg. Med. Chem. Lett.
2014, 24, 1052. (b) Pereira, U. A.; Barbosa, L. C. A.; Maltha, C. R.
A.; Demuner, A. J.; Masood, M. A.; Pimenta, A. L. Eur. J. Med.
Chem. 2014, 82, 127.
6.
(a) Luca, L. D.; Nieddu, G.; Porcheddu, A.; Giacomelli, G. Curr.
Med. Chem. 2009, 16, 1. (b) Khanam, H, Shamsuzzanam, Eur. J.
Med. Chem. 2015, 97, 561.
7.
8.
Manzanaro, S.; Salvá, J.; de la Fuente, J. Á. J. Nat. Prod. 2006, 69,
1485.
Ye, Y. -Q.; Xia, C. -F.; Yang, J. -X.; Yang, Y. -C.; Gao, X. -M.;
Du, G.; Yang, H. -Y.; Li, X. -M.; Hu Q. -F. Heterocycles 2014, 89,
2177.
9.
(a) Barbosa, L. C. A.; Maltha, C. R. A.; Lage, M. R.; Barcelos, R.
C.; Donà, A.; Carneiro, J. W. M.; Forlani, G. J. Agric, Food Chem.
2012, 60, 10555. (b) Pereira, U. A.; Barbosa, L. C. A.; Demuner, A.
J.; Silva, A. A.; Bertazzini, M.; Forlani, G. Chem. Biodiversity
2015, 12, 987.
10. (a) Kotora, M.; Negishi, E.-i. Synthesis 1997, 121. (b) Boukouvalas,
J.; Lachance, N.; Ouellet, M.; Trudeau, M.; Tetrahedron Lett. 1998,
39, 7665. (c) Kar, A.; Argade, N. P.; Synthesis 2005, 14, 2284. (d)
Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Sferrazza, A. Synlett 2009,
1277. (e) Chavan, S. P.; Pathak, A. B.; Pandey, A.; Kalkote, U. R.;
Synth. Commun. 2007, 37, 4253. (f) Tale, N. P.; Shelke, A. V.;
Tiwari, G. B.; Thorat, P. B.; Karade, N. N. Helv. Chim. Acta 2012,
95, 852. (g) Bellina, F.; Anselmi, C.; Rossi, R. Tetrahedron Lett.
2002, 43, 2023. (h) Boukouvalas, J.; McCann, L. C. Tetrahedron
Lett. 2010, 51, 4636. (i) Bellina, F.; Anselmi, C.; Martina, F.; Rossi,
R. Eur. J. Org. Chem. 2003, 2290.
11. (a) Prim, D.; Fuss, A.; Kirsch, G.; Silva, A. M. S. J. Chem. Soc.,
Perkin Trans. 1 1999, 1175. (b) Wu, J.; Zhu, Q.; Wang, L.; Fathi,