a variety of reagents and scavengers possessing tunable
properties have emerged from ring-opening metathesis
polymerization (ROMP) technology.4À6 We herein report
the development of a new ROMP-derived oligomeric
triazole phosphate (OTP) for application as a soluble,
efficient triazolating reagent of nucleophilic species. Over-
all, these reagents are free-flowing solids that are easy to
handle, nontoxic, soluble, and air stable. In addition, they
are easily stored long-term at room temperature and are
readily prepared, vide infra, from commercially available
starting materials on a multigram scale.
The development of new methodolgies for the diversifi-
cation of biologically interesting core scaffolds with func-
tional handles is of paramount importance. In this regard,
triazoles and their derivatives have demonstrated a wide
variety of biological activity, with many reports focusing
on antifungal activity.7 Despite this activity, the utilization
of solution phase or immobilized reagents to directly
triazolate nucleophilic species in a one-step protocol has
been limited to reports of a two-step, one-pot propargyla-
tion-click protocol.8
oligomeric benzyl phosphate (OBP) as an efficient benzy-
lating reagent.10 We now report the synthesis of ROMP-
derived triazolating reagents (OTP) for application in
purification-free diversifications of nucleophilic species
using the title method, termed “Click”-Capture, ROMP,
Release. This method utilizes a propargyl-tagged norbor-
nenyl-phosphate to capture an azide in a classical “click”
reaction, followedby ROM polymerization to generate the
desired soluble oligomeric triazole reagent (OTP) 4. Sub-
sequent release via SN2 displacement with nucleophilic
species yields triazolated products along with the spent
oligomeric phosphate that is readily sequestered via pre-
cipitation (Figure 1).
Oligomeric and polyphosphates are ideal immobilized
leaving groups due to the inherint pKa, stability and innate
leaving group properties of phosphate anions.9À11 Re-
cently, we reported the generation and application of
Figure 1. Reaction of oligomeric triazole phosphate (OTP) 4.
(4) (a) Barrett, A. G. M.; Hopkins, B. T.; Kobberling, J. Chem. Rev.
2002, 102, 3301–3324. (b) Harned, A. M.; Probst, D. A.; Hanson, P. R.
In Handbook of Metathesis; Grubbs, R. H., Ed.: Wiley-VCH: Weinheim,
2003; Vol. 2, pp 361À402. (c) Flynn, D. L.; Hanson, P. R.; Berk, S. C.;
Makara, G. M. Curr. Opin. Drug Discovery Dev. 2002, 5, 571–579. (d)
Harned, A. M.; Zhang, M.; Vedantham, P.; Mukherjee, S.; Herpel,
R. H.; Flynn, D. L.; Hanson, P. R. Aldrichimica Acta 2005, 38, 3–16.
(5) (a) Rolfe, A.; Loh, J. K.; Maity, P. K.; Hanson, P. R. Org. Lett.
2011, 1, 4–7. (b) Maity, P.; Rolfe, A.; Samarakoon, T. B.; Faisal, S.;
The synthesis of the oligomeric triazole phosphate bear-
ing a 4-MeOPh group, OTP 4a, starts with the exonorbor-
nenyl tagged(Nb-tagged) phosphonyl chloride1 utilizedin
the synthesis of previously reported ROMP-derived ben-
zylating reagent OBP.10,12 Phosphorylation of propargyl
alcohol with Nb-tagged phosphonyl chloride 1, followed
by a “Click”-capture event of the corresponding azide,
yields the desired monomer 3a in an efficient fashion.
ROM polymerization of monomer 3a was achieved with
RuCl2(PCy3)2dCHPh (cat. A), followed by basic workup
€
Kurtz, R.; Long, T. R.; Schatz, A.; Flynn, D.; Grass, R. N.; Stark, W. J.;
Reiser, O.; Hanson, P. R. Org. Lett. 2011, 1, 8–10. (c) Rolfe, A.; Probst,
D.; Volp, K.; Omar, I.; Flynn, D.; Hanson, P. R. J. Org. Chem. 2008, 73,
8785–8790. (d) Stoianova, D. S.; Yao, L.; Rolfe, A.; Samarakoon, T.;
Hanson, P. R. Tetrahedron Lett. 2008, 49, 4553–4555. (e) Zhang, M.;
Flynn, D. L.; Hanson, P. R. J. Org. Chem. 2007, 72, 3194–3198. (f)
Roberts, R. S. J. Comb. Chem. 2005, 7, 21–32. (g) Harned, A. M.;
Sherrill, W. M.; Flynn, D. L.; Hanson, P. R. Tetrahedron 2005, 61,
12093–12099. (h) Arstad, E.; Barrett, A. G. M.; Tedeschi, L. Tetrahedron
Lett. 2003, 44, 2703–2707. (i) Barrett, A. G. M.; Hopkins, B. T.; Love,
A. C.; Tedeschi, L. Org. Lett. 2004, 6, 835–837.
Scheme 1. Synthesis of Oligomeric Triazole Phosphate (OTP) 4a
(6) Vedantham, P.; Zhang, M.; Gor, P. J.; Huang, M.; Georg, G. I.;
Lushington, G. H.; Mitscher, L. A.; Ye, Q.-Z.; Hanson, P. R. J. Comb.
Chem. 2008, 10, 195–203.
(7) (a) Xia, Y.; Qu, F.; Peng, L. Rev. Med. Chem. 2010, 10, 806–821.
(b) Cronin, S.; Chandrasekar, P. H. J. Antimicrob. Chemother. 2010, 65,
410–416. (c) Nivoix, Y.; Ubeaud-Sequier, G.; Engel, P.; Leveque, D.;
Herbrecht, R. Curr. Drug Metab. 2009, 10, 395–409.
(8) (a) Inverrarity, I. A.; Hulme, A. N. Org. Biomol. Chem. 2007, 5,
636–643. (b) Smith, G.; Glaser, M.; Perumal, M.; Nguyen, Q.-D.; Shan,
B.; Aarstad, E.; Aboagye, E. O. J. Med. Chem. 2008, 51, 8057–8067.
(9) (a) Manfredini, T.; Pellacani, G. C.; Pozzi, P.; Corradi, A. B. Appl.
Clay Sci. 1990, 5, 193–201. (b) Best, M. D.; Zhang, H.; Prestwich, G. D.
Nat. Prod. Rep. 2010, 27, 1403–1430. (c) Fylaktakidou, K. C.; Duarte,
C. D.; Koumbis, A. E.; Nicolau, C.; Lehn, J.-M. Chem. Med. Chem.
2011, 6, 153À168 and references cited therein.
(10) Long, T. R.; Maity, P. K.; Samarakoon, T. B.; Hanson, P. R.
Org. Lett. 2010, 12, 2904–2907 and references cited therein.
(11) (a) Nicolaou, K. C.; Shi, G. Q.; Gunzner, J. L.; Gaertner, P.;
Yang, Z. J. Am. Chem. Soc. 1997, 119, 5467–5468. (b) La Cruz, T. E.;
Rychnovsky, S. D. J. Org. Chem. 2007, 72, 2602–2611. (c) Lapointe, D.;
Fagnou, K. Org. Lett. 2009, 11, 4160–4163. (d) Westheimer, F. H.
Science 1987, 236, 1173–1178. (e) Thomas, C. D.; Hanson, P. R. In
Metathesis in Natural Product Synthesis; Cossy, J., Areniyadis, S., Meyer,
C., Ed.: Wiley-VCH: Weinheim, 2010; pp 129À144. (f) Beaucage, S. L.;
Caruthers, M. H. Bioorganic Chemistry: Nucleic Acids; Hecht, S. M., Ed.;
Oxford University Press: New York, 1996; Chapter 2, pp 36À74.
Org. Lett., Vol. 13, No. 8, 2011
2039