SOLVOTHERMAL SYNTHESIS AND STRUCTURAL CHARACTERIZATION
179
0
c
a
b
Fig. 3. View of the crystal packing along the y axis showing the hydrogen bonding interactions.
4. Ma, Y., Han, Z.B., He, Y.K., et al., Chem. Commun.
2007, no. 40, p. 4107.
5. Nouar, F., Eubank, J.F., Bousquet, T., et al., J. Am.
Chem. Soc., 2008, vol. 130, no. 6, p. 1833.
6. Han, Z.B., Zhang, G.X., Zeng, M.H., et al., Inorg.
Chem., 2010, vol. 49, no. 2, p. 769.
7. Wang, R.H., Hong, M.C., Yuan, D.Q., et al., Eur. J.
Inorg. Chem., 2004, no. 1, p. 37.
8. Zhu, H.L., Tong, Y.X., and Chen, X.M., Dalton,
Trans., 2000, no. 22, p. 4182.
9. Banfi, S., Carlucci, L., Caruso, E., et al., Dalton Trans.
2002, vol. 2, no. 13, p. 2714.
,
sional supramolecular network (Fig. 3). The hydrogen
bonding interactions enhance the stability of the comꢀ
plex [16–18].
The IR spectrum of I not only shows the characterꢀ
istic bands of amino groups at 3409 cm–1 for the asymꢀ
metric stretching and at 3322 cm–1 for symmetric
stretching, but also illustrates the characteristic bands
of carboxyl groups at 1654, 1600 cm–1 for the asymꢀ
metric stretching and at 1481, 1340 cm–1 for symmetꢀ
ric stretching. The values of
Δ(νas–νs) are 173 and
,
260 cm–1 and = 173 and 200 cm–1, indicatꢀ
Δ
(
νas–νs)
ing that the coordination mode of one carboxyl group
10. Long, D.L., Blake, A.J., Champness, N.R., et al.,
of the ATIBDC ligand is chelating bidentate and
Chem. Eur. J., 2002, vol. 8, no. 9, p. 2026.
11. Su, C.Y., Cai, Y.P., Chen, C.L., et al., Angew. Chem. Int.
Ed., 2002, vol. 41, no. 18, p. 3371.
12. Dai, F.N., He, H.Y., and Sun, D.F., J. Am. Chem. Soc.
2008, vol. 130, no. 43, p. 14046.
13. Sheldrick, G.M., SHELXTLꢀ97, Program for Crystal
Structure Refinement, Göttingen (Germany): Univ. of
Göttingen, 1997.
Δ(νas–
νs) = 260 cm–1 > 200 cm–1 demonstrates the
monodentate of the other carboxylic group to Zn(II)
[19]. The absence of strong characteristic peaks at
1700–1750 cm–1 reveals that all carboxylic groups are
completely deprotonated [20], which is consistent
with the results of the Xꢀray analysis.
,
14. Sheldrick, G.M., SHELXSꢀ97, Program for Crystal
Structure Solution, Göttingen (Germany): Univ. of
Göttingen, 1997
15. Sheldrick, G.M., Acta Crystallogr., Sect. A: Found.
Crystallogr., 1990, vol. 46, no. 6, p. 467.
ACKNOWLEDGMENTS
This work was supported by the National Nature
Science Fundational of China (grant no. 20871063).
16. Han, Z.B., He, Y.K., Ge, C.H., et al., Dalton Trans.
2007, no. 28, p. 3020.
,
REFERENCES
17. Steiner, T., Angew. Chem. Int. Ed., 2002, vol. 41, no. 1,
1. Ockwig, N.W., Friedrichs, O.D., O’Keeffe, M., and
Yaghi, O.M., Acc. Chem. Res., 2005, vol. 38, no. 3,
p. 176.
p. 48.
18. Kitagawa, S. and Uemura, K., Chem. Soc. Rev., 2005,
vol. 34, no. 2, p. 109.
19. Zhang, D.J., Song, T.Y., Shi, J., et al., Inorg. Chem.
Commun., 2008, vol. 11, p. 192.
2. Rao, C.N.R., Natarajan, S., and Vaidhyanathan, R.,
Angew. Chem. Int. Ed., 2004, vol. 34, no. 12, p. 1466.
3. Pan, L., Sander, M.B., Huang, X.Y., et al., J. Am. Chem. 20. Han, Z.B., Cheng, X.N., and Chen, X.M., Cryst.
Soc., 2004, vol. 126, no. 5, p. 1308.
Growth Des., 2005, vol. 5, no. 2, p. 695.
RUSSIAN JOURNAL OF COORDINATION CHEMISTRY Vol. 37
No. 3
2011