ChemComm
Communication
Table 3 Temperature-dependent distributions of intermediate and circular
oligomers from one-pot cyclohexamerization of 7a in THF
Financial support for this work to B.Q. by the National
Science Foundation of China (No. 21272293) and to H.Z. by
SPORE (COY-15-EWI-RCFSA/N197-1) and the NRF CRP Grant
(R-154-000-529-281) is gratefully acknowledged.
Notes and references
1 For recent reviews on H-bonding-assisted one-pot macrocyclization
reactions, see: (a) W. Q. Ong and H. Q. Zeng, J. Inclusion Phenom.
Macrocyclic Chem., 2013, 76, 1; (b) H. L. Fu, Y. Liu and H. Q. Zeng,
Chem. Commun., 2013, 49, 4127; (c) K. Yamato, M. Kline and B. Gong,
Chem. Commun., 2012, 48, 12142.
Yielda,b (%)
Intermediate oligomers Circular oligomers
2 (a) H. Q. Zhao, J. Shen, J. J. Guo, R. J. Ye and H. Q. Zeng, Chem.
Commun., 2013, 49, 2323; (b) B. Qin, C. L. Ren, R. J. Ye, C. Sun, K. Chiad,
X. Y. Chen, Z. Li, F. Xue, H. B. Su, G. A. Chass and H. Q. Zeng, J. Am.
Chem. Soc., 2010, 132, 9564; (c) C. L. Ren, V. Maurizot, H. Q. Zhao,
J. Shen, F. Zhou, W. Q. Ong, Z. Y. Du, K. Zhang, H. B. Su and H. Q. Zeng,
J. Am. Chem. Soc., 2011, 133, 13930; (d) J. Hu, L. Chen, Y. Ren, P. Deng,
X. Li, Y. Wang, Y. Jia, J. Luo, X. Yang, W. Feng and L. H. Yuan, Org. Lett.,
2013, 15, 4670; (e) A. R. Sanford, L. H. Yuan, W. Feng, K. Y. R. A. Flowersb
and B. Gong, Chem. Commun., 2005, 4720; ( f ) Y. Y. Zhu, C. Li, G. Y. Li,
X. K. Jiang and Z. T. Li, J. Org. Chem., 2008, 73, 1745; (g) H. Jiang, J.-M.
Leger, P. Guionneau and I. Huc, Org. Lett., 2004, 6, 2985; (h) A. J. Helsel,
A. L. Brown, K. Yamato, W. Feng, L. H. Yuan, A. J. Clements, S. V. Harding,
G. Szabo, Z. F. Shao and B. Gong, J. Am. Chem. Soc., 2008, 130, 15784;
(i) P. S. Shirude, E. R. Gillies, S. Ladame, F. Godde, K. Shin-Ya, I. Huc and
S. Balasubramanian, J. Am. Chem. Soc., 2007, 129, 11890.
3 For examples of one-pot macrocyclizations, see: (a) F. J. Carver, C. A.
Hunter and R. J. Shannon, Chem. Commun., 1994, 1277; (b) L. H. Yuan,
W. Feng, K. Yamato, A. R. Sanford, D. Xu, H. Guo and B. Gong, J. Am.
Chem. Soc., 2004, 126, 11120; (c) H. Jiang, J. M. Leger, P. Guionneau and
I. Huc, Org. Lett., 2004, 6, 2985; (d) L. Y. Xing, U. Ziener, T. C.
Sutherland and L. A. Cuccia, Chem. Commun., 2005, 5751; (e) A. M.
Zhang, Y. H. Han, K. Yamato, X. C. Zeng and B. Gong, Org. Lett., 2006,
8, 803; ( f ) W. Feng, K. Yamato, L. Q. Yang, J. S. Ferguson, L. J. Zhong,
S. L. Zou, L. H. Yuan, X. C. Zeng and B. Gong, J. Am. Chem. Soc., 2009,
131, 2629; (g) J. S. Ferguson, K. Yamato, R. Liu, L. He, X. C. Zeng and
B. Gong, Angew. Chem., Int. Ed., 2009, 48, 3150; (h) F. Li, Q. Gan, L. Xue,
Z.-M. Wang and H. Jiang, Tetrahedron Lett., 2009, 50, 2367; (i) S. Guieu,
A. K. Crane and M. J. MacLachlan, Chem. Commun., 2011, 47, 1169.
Temp. (1C)
P2
P3
P4
P5 2a
8a
25
40
60
70
20
14
6
15
7
4
12
11
7
7
6
4
3
1
1
2
3
4
11
19
24
3
2
3
a
Reaction conditions: 7a (0.5 mmol), AlMe3 (1.5 mmol), THF (5 mL),
b
12 h. Isolated yield by flash column chromatography.
The substrate scope was then examined by applying the
optimized macrocyclization conditions to monomeric 7b–d
(Fig. 2). Except for 7b for which no macrocyclization product
8b was observed, 8c and 8d both were produced satisfactorily
from 7c and 7d with respective yields of 17% and 12%.
Previously, we showed that strained hexamer 8a is generated
predominantly from bimolecular reactions between dimer
and tetramer molecules or between two trimer molecules for
POCl3-mediated one-pot cyclooligomerization of 1a.4d This
bimolecular reaction mechanism, rather than a chain-growth
mechanism,4c seems to be in operation as well for AlMe3-
mediated one-pot cyclohexamerization of 7a that affords 8a
(Table 3). Substantiated by the crystallographically proven 4 (a) B. Qin, W. Q. Ong, R. J. Ye, Z. Y. Du, X. Y. Chen, Y. Yan, K. Zhang,
H. B. Su and H. Q. Zeng, Chem. Commun., 2011, 47, 5419; (b) B. Qin,
C. Sun, Y. Liu, J. Shen, R. J. Ye, J. Zhu, X.-F. Duan and H. Q. Zeng, Org.
Lett., 2011, 13, 2270; (c) B. Qin, S. Shen, C. Sun, Z. Y. Du, K. Zhang and
helically folded structures adopted by hexamers of closely
related structures,4f,g hexamer P6 is computationally deter-
mined to adopt a helically folded structure that is rigidified
by strong H-bonds (see the structure in Table 3). As a result, the
two reacting end groups in P6 are rigidly placed far away from
each other and the intramolecular ring-closing reaction thus
does not occur readily to produce 8a. Consistent with this
structural constraint and going from 25 to 70 1C, 8a is produced
increasingly more with increasing consumptions of P2–4 via
bimolecular reactions. In regard with the yields of pentamer 2a,
the presence of equal or more amounts of P5 at various
temperatures suggests an energetically less favoured process
for conversion of P5 into 2a during the AlMe3-mediated cyclo-
oligomerization reaction. Similar unfavorability is expected for
conversions of P5 into P6 and of P6 into 8a.
To summarize, although thus far we have not been able to
find any ‘‘cognate’’ macrocyclization reagent for monomeric
fluorobenzene 55a,b and pyridine5c–e motifs, our continued
investigations do help to identify trimethyl aluminum as a very
surprising macrocyclization reagent, selectively producing
energetically less favored strained macrocyclic hexamers such
as 8a via one-pot cyclohexamerization of 7a. We are currently
investigating the possible structural origins accounting for this
unusual selectivity.
H. Q. Zeng, Chem.–Asian J., 2011, 6, 3298; (d) Y. Liu, B. Qin and
H. Q. Zeng, Sci. China: Chem., 2012, 55, 55; (e) Z. Y. Du, C. L. Ren,
R. J. Ye, J. Shen, Y. J. Lu, J. Wang and H. Q. Zeng, Chem. Commun.,
2011, 47, 12488; ( f ) Y. Yan, B. Qin, C. L. Ren, X. Y. Chen, Y. K. Yip,
R. J. Ye, D. W. Zhang, H. B. Su and H. Q. Zeng, J. Am. Chem. Soc., 2010,
132, 5869; (g) Y. Yan, B. Qin, Y. Y. Shu, X. Y. Chen, Y. K. Yip,
D. W. Zhang, H. B. Su and H. Q. Zeng, Org. Lett., 2009, 11, 1201.
5 (a) C. L. Ren, F. Zhou, B. Qin, R. J. Ye, S. Shen, H. B. Su and H. Q. Zeng,
Angew. Chem., Int. Ed., 2011, 50, 10612; (b) C. L. Ren, S. Y. Xu, J. Xu,
H. Y. Chen and H. Q. Zeng, Org. Lett., 2011, 13, 3840; (c) C. Sun,
C. L. Ren, Y. C. Wei, B. Qin and H. Q. Zeng, Chem. Commun., 2013,
49, 5307; (d) H. Q. Zhao, W. Q. Ong, F. Zhou, X. Fang, X. Y. Chen,
S. F. Y. Li, H. B. Su, N.-J. Cho and H. Q. Zeng, Chem. Sci., 2012, 3, 2042;
(e) W. Q. Ong, H. Q. Zhao, C. Sun, J. E. Wu, Z. C. Wong, S. F. Y. Li,
Y. H. Hong and H. Q. Zeng, Chem. Commun., 2012, 48, 6343; ( f ) B. Qin,
X. Y. Chen, X. Fang, Y. Y. Shu, Y. K. Yip, Y. Yan, S. Y. Pan, W. Q. Ong,
C. L. Ren, H. B. Su and H. Q. Zeng, Org. Lett., 2008, 10, 5127.
6 (a) H. L. Bassett and C. R. Thomas, J. Chem. Soc., 1954, 1188; (b) K. W.
Yong, J. G. Cannon and J. G. Rose, Tetrahedron Lett., 1970, 11, 1791;
(c) C. F. Huebner, R. Lucas, H. B. McPhullamy and H. A. Troxell, J. Am.
Chem. Soc., 1955, 77, 469; (d) A. Basha, M. Lipton and S. M. Weinreb,
Tetrahedron Lett., 1977, 18, 4171; (e) A. Novak, L. D. Humphreys,
M. D. Walker and S. Woodward, Tetrahedron Lett., 2006, 47, 5767;
( f ) A. Yokoyama, T. Maruyama, K. Tagami, H. Masu, K. Katagiri,
I. Azumaya and T. Yokozawa, Org. Lett., 2008, 10, 3207.
7 (a) W. Q. Ong, H. Q. Zhao, Z. Y. Du, J. Z. Y. Yeh, C. L. Ren, L. Z. W. Tan,
K. Zhang and H. Q. Zeng, Chem. Commun., 2011, 47, 6416; (b) W. Q. Ong,
H. Q. Zhao, X. Fang, S. Woen, F. Zhou, W. L. Yap, H. B. Su, S. F. Y. Li and
H. Q. Zeng, Org. Lett., 2011, 13, 3194.
3584 | Chem. Commun., 2014, 50, 3582--3584
This journal is ©The Royal Society of Chemistry 2014