using relatively expensive R-silyl nitriles and zinc cyano-
alkyl reagents for coupling of aryl bromides.8
We embarked on this investigation from our initial
failure in the arylation of benzylic nitrile using weak
bases under palladium catalysis (Scheme 1). This reac-
tion did not proceed, possibly because of the inefficient
basicity of the weak base for assisting R-deprotonation
of nitriles. Thus, if the acidity of the R-proton is in-
creased by an additional neighboring activating group,
this process would likely be viable.19 Hence, we chose
cyanoacetate as the substrate for the attempted diaryla-
tion process (Scheme 1). Having the additional car-
boxylic group, this type of substrate offers both the
feasibility of R-deprotonation/arylation and a subse-
quent decarboxylative arylation step.
Decarboxylative couplings have been successful as an
alternative CÀC bond construction process to tradi-
tional cross-coupling reactions. Recently, Forgione,9
Glorius,10 Goossen,11 Liu,12 Myers,13 Tunge,14 and others15
made significant advancements of decarboxylative cou-
pling using various electrophiles and nucleophiles. Yet,
to the best of our knowledge, there have been very
limited literature reports16 describing the decarboxyla-
tive method for accessing 2-arylacetonitrile-related ske-
letons. Inspired by the advantages of using decarbox-
ylative coupling (in the absence of transmetallating
agent, e.g., B, Zn, Mg, Si, etc.)17 and our continuing
progress in nitrile synthesis,18 we were attracted to
developing a decarboxylative protocol for preparing
R-substituted nitriles. Herein, we report our exploration
on decarboxylative coupling of potassium cyanoacetates
with aryl halides for synthesizing the R-diarylated ni-
triles. This protocol features both coupling partners that
are readily available.
Scheme 1. Investigations on the Protocol for R-Diaryl Nitrile
Synthesis
(8) Wu, L.; Hartwig, J. F. J. Am. Chem. Soc. 2005, 127, 15824.
(9) Forgione, P.; Brochu, M. C.; St-Onge, M.; Thesen, K. H.; Bailey,
M. D.; Bilodeau, F. J. Am. Chem. Soc. 2006, 128, 11350.
(10) (a) Wang, C.; Rakshit, S.; Glorius, F. J. Am. Chem. Soc. 2010,
132, 14006. (b) Wang, C.; Piel, I.; Glorius, F. J. Am. Chem. Soc. 2009,
131, 4194.
(11) (a) Goossen, L. J.; Deng, G.; Levy, L. M. Science 2006, 313, 662. (b)
Goossen, L. J.; Rodriguez, N.; Melzer, B.; Linder, C.; Deng, G.; Levy, L. M.
J. Am. Chem. Soc. 2007, 129, 4824. (c) Goossen, L. J.; Zimmermann, B.;
Knauber, T. Angew. Chem., Int. Ed. 2008, 47, 7103. (d) Goossen, L. J.;
Rodriguez, N.; Linder, C. J. Am. Chem. Soc. 2008, 130, 15248. (e) Goossen,
L. J.; Rudolphi, F.; Oppel, C.; Rodriguez, N. Angew. Chem., Int. Ed. 2008,
47, 3043. (f) Goossen, L. J.; Rodriguez, N.; Lange, P.; Linder, C. Angew.
Chem., Int. Ed. 2010, 49, 1111.
(12) (a) Shang, R.; Yang, Z. W.; Wang, Y.; Zhang, S. L.; Liu, L.
J. Am. Chem. Soc. 2010, 132, 14391. (b) Zhang, S.-L.; Fu, Y.; Shang, R.;
Guo, Q.-X.; Liu, L. J. Am. Chem. Soc. 2010, 132, 638. (c) Shang, R.; Fu,
Y.; Li, J. B.; Zhang, S. L.; Guo, Q.-X.; Liu, L. J. Am. Chem. Soc. 2009,
131, 5738. (d) Shang, R.; Fu, Y.; Wang, Y.; Xu, Q.; Yu, H.-Z.; Liu, L.
Angew. Chem., Int. Ed. 2009, 48, 9350.
(13) (a) Tanaka, D.; Romeril, S. P.; Myers, A. G. J. Am. Chem. Soc.
2005, 127, 10323. (b) Tanaka, D.; Myers, A. G. Org. Lett. 2004, 6, 433.
(c) Myers, A. G.; Tanaka, D.; Mannion, M. R. J. Am. Chem. Soc. 2002,
124, 11250.
(14) (a) Weaver, J. D.; Ka, B. J.; Morris, D. K.; Thompson, W.;
Tunge, J. A. J. Am. Chem. Soc. 2010, 13, 12179. (b) Recio, A., III; Tunge,
J. A. Org. Lett. 2009, 11, 5630. (c) Waetzig, S. R.; Tunge, J. A. J. Am.
Chem. Soc. 2007, 129, 4138. (d) Burger, E. C.; Tunge, J. A. J. Am. Chem.
Soc. 2006, 128, 10002.
(15) For other recent selected references, see: (a) Fang, P.; Li, M.; Ge,
H. J. Am. Chem. Soc. 2010, 132, 11898. (b) Lindh, J.; Sjoberg, P. J. R.;
Larhed, M. Angew. Chem., Int. Ed. 2010, 49, 7733. (c) Voutchkova, A.;
Coplin, A.; Leadbeater, N. E.; Crabtree, R. H. Chem. Commun 2008,
6312. (d) Becht, J.-M.; Catala, C.; Le Drian, C.; Wagner, A. Org. Lett.
2007, 9, 1781.
(16) During the completion of the manuscript, a Pd-catalyzed mono-
R-arylation of nitriles appeared (April 7, 2011); see: Shang, R.; Ji, D.-S.;
Chu, L.; Liu, L. Angew. Chem., Int. Ed. 2011, Early View.
(17) For research books of traditional cross-couplings using trans-
metallating agents, see: (a) de Meijere, A.; Diederich, F., Ed. Metal-
Catalyzed Cross-Coupling Reactions, 2nd ed.; Wiley-VCH: Weinheim,
2004; Vols. 1À2. (b) Beller, M.; Bolm, C. Transition Metals for Organic
Synthesis, Building Blocks and Fine Chemicals, 2nd ed.; Wiley-VCH:
Weinheim, 2004; Vols. 1À2. (c) Negishi, E., Ed. Handbook of Organo-
palladium for Organic Synthesis; Wiley-Interscience: New York, 2002;
Vols. 1À2. (d) Tsuji, J. Palladium Reagents and Catalysts, 2nd ed.; Wiley:
Chichester, 2004.
We began to examine the proposed study by using
potassium cyanoacetate and 4-chlorotoluene as the cou-
pling partners (Table 1). A scanning of commercially
available palladium precursors revealed that Pd(dba)2
and Pd(OAc)2 were the best choice (entries 1À6). Com-
monly used phosphine ligands for aryl chloride coupling
reactions were screened. XPhos20 gave the best results,
while SPhos21 and CM-phos22 provided slightly lower
product yield (entries 6À8). CataXium A,23 CataXium
PCy, and CataXium PInCy24 did not promote this
reaction well (entries 9À11). Xylene and mesitylene
solvents gave excellent yield, while DMF solvent af-
forded low substrate conversion (entries 12À14). This
decarboxylative coupling did not proceed at 100 °C
(entry 15).
(19) For a recent review on Pd-catalyzed R-arylation of the activated
methylene group, see: (a) Bellina, F.; Rossi, R. Chem. Rev. 2010, 110,
1082. For our previous investigation on R-arylation of 1,3-dicarbonyl
compounds, see: Yip, S. F.; Cheung, H. Y.; Kwong, F. Y. Org. Lett.
2007, 9, 3469.
(20) Nguyen, H. N.; Huang, X.; Buchwald, S. L. J. Am. Chem. Soc.
2003, 125, 11818.
(21) Barder, T. E.; Walker, S. D.; Martinelli, J. R.; Buchwald, S. L.
J. Am. Chem. Soc. 2005, 127, 4685.
(22) (a) So, C. M.; Zhou, Z.; Lau, C. P.; Kwong, F. Y. Angew. Chem.,
Int. Ed. 2008, 47, 6402. (b) So, C. M.; Lau, C. P.; Kwong, F. Y. Angew.
Chem., Int. Ed. 2008, 47, 8059. (c) So, C. M.; Lau, C. P.; Chan, A. S. C.;
Kwong, F. Y. J. Org. Chem. 2008, 73, 7731.
(23) Zapf, A.; Ehrentraut, A.; Beller, M. Angew. Chem., Int. Ed. 2000,
39, 4153.
(24) Zapf, A.; Beller, M. Chem. Commun. 2005, 431.
(18) (a) Yeung, P. Y.; So, C. M.; Lau, C. P.; Kwong, F. Y. Angew.
Chem., Int. Ed. 2010, 49, 8918. (b) Yeung, P. Y.; So, C. M.; Lau, C. P.;
Kwong, F. Y. Org. Lett. 2011, 13, 648.
Org. Lett., Vol. 13, No. 11, 2011
2913