Journal of the American Chemical Society
Page 4 of 5
(1) Walsh, P. J.; Kozlowski, M. C. Fundamentals of Asymmetric
Singh, S.; Villa-Marcos, B. Chem. Commun. 2013, 49, 6546. (d)
1
2
3
4
5
6
7
8
Catalysis; University Science Books: Sausalito, California, 2009.
(2) For reviews on different aspects of metal-centered chirali-
ty, see: (a) Pierre, J.-L. Coord. Chem. Rev. 1998, 178-180, 1183. (b)
Knof, U.; von Zelewsky, A. Angew. Chem. Int. Ed. 1999, 38, 302.
(c) Fontecave, M.; Hamelin, O.; Ménage, S. Top. Organomet.
Chem. 2005, 15, 271. (d) Meggers, E. Eur. J. Inorg. Chem. 2011,
2911. (e) Bauer, E. B. Chem. Soc. Rev. 2012, 41, 3153 (f) Crassous, J.
Chem. Commun. 2012, 48, 9684. (g) Gong, L.; Chen, L.-A.; Meg-
gers, E. Angew. Chem. Int. Ed. 2014, 53, 10868. (h) Cao, Z.-Y.;
Brittain, W. D. G.; Fossey, J. S.; Zhou, F. Catal. Sci. Technol. 2015,
5, 3441.
Ma, J.; Shen, X.; Harms, K.; Meggers, E. Dalton Trans. 2016, 45,
8320.
(11) For the auxiliary-mediated synthesis of enantiopure ru-
thenium polypyridyl complexes, see: Gong, L.; Wenzel, M.; Meg-
gers, E. Acc. Chem. Res. 2013, 46, 2635.
(12) The chiral ligand (S)-2 apparently only reacts with Λ-Ru1
to form Λ-(S)-3 since the diastereomer ꢀ-(S)-3 was not detected.
In fact, reisolated, unreacted Ru1 is enriched in ꢀ-Ru1 and can
be subsequently reacted with the chiral ligand (R)-2 to provide
ꢀ-(R)-3 in 22% yield, although the purity of this compound is
slightly diminished.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(3) For precedence of asymmetric, octahedrally coordinated
catalysts featuring solely metal-centered chirality, see: (a) Cha-
varot, M.; Ménage S.; Hamelin, O.; Charnay, F.; Pécaut, J.; Fon-
tecave, M. Inorg. Chem. 2003, 42, 4810. (b) Hamelin, O.; Rim-
boud, M.; Pécaut, J.; Fontecave, M. Inorg. Chem. 2007, 46, 5354.
(c) Ganzmann, C.; Gladysz, J. A. Chem. Eur. J. 2008, 14, 5397. (d)
Chen, L.-A.; Xu, W.; Huang, B.; Ma, J.; Wang, L.; Xi, J.; Harms,
K.; Gong, L.; Meggers, E. J. Am. Chem. Soc. 2013, 135, 10598.
(4) (a) Huo, H.; Fu, C.; Harms, K.; Meggers, E. J. Am. Chem.
Soc. 2014, 136, 2990. (b) Huo, H.; Shen, X.; Wang, C.; Zhang, L.;
Röse, P.; Chen, L.-A.; Harms, K.; Marsch, M.; Hilt, G.; Meggers,
E. Nature 2014, 515, 100. (c) Shen, X.; Huo, H.; Wang, C.; Zhang,
B.; Harms, K.; Meggers, E. Chem. Eur. J. 2015, 21, 9720. (d) Wang,
C.; Qin, J.; Shen, X.; Riedel, R.; Harms, K.; Meggers, E. Angew.
Chem. Int. Ed. 2016, 55, 685.
(5) (a) Wang, C.; Chen, L.-A.; Huo, H.; Shen, X.; Harms, K.;
Gong, L.; Meggers, E. Chem. Sci. 2015, 6, 1094. (b) Tan, Y.; Yuan,
W.; Gong, L.; Meggers, E. Angew. Chem. Int. Ed. 2015, 54, 13045.
(c) Shen, X.; Harms, K.; Marsch, M.; Meggers, E. Chem. Eur. J.
2016, 22, 9102. (d) Huo, H.; Harms, K.; Meggers, E. J. Am. Chem.
Soc. 2016, 138, 6936.
(6) (a) Li, Z.-Z.; Yao, S.-Y.; Wu, J.-J.; Ye, B.-H. Chem. Commun.
2014, 50, 5644. (b) Li, Z.-Z.; Yao, S.-Y.; Ye, B.-H. ChemPlusChem
2015, 80, 141. (c) Li, Z.-Z.; Wen, A.-H.; Yao, S.-Y.; Ye, B.-H. Inorg.
Chem. 2015, 54, 2726. (d) Li, Z.-Z.; Yao, S.-Y.; Wen, A.-H.; Ye, B.-
H. Eur. J. Inorg. Chem. 2015, 4335.
(13) (a) Watson, R. T.; Jackson, J. L.; Harper, J. D.; Kane-
Maguire, K. A.; Kane-Maguire, L. A. P.; Kane-Maguire, N. A. P.
Inorg. Chim. Acta 1996, 249, 5. (b) Gong, L.; Mulcahy, S. P.; De-
varajan, D.; Harms, K.; Frenking, G.; Meggers, E. Inorg. Chem.
2010, 49, 7692.
(14) For precedence on enantioselective, catalytic alkynyla-
tions of trifluoromethyl ketones, see: (a) Motoki, R.; Tomita, D.;
Kanai, M.; Shibasaki, M. Tetrahedron Lett. 2006, 47, 8083. (b)
Motoki, R.; Kanai, M.; Shibasaki, M. Org. Lett. 2007, 9, 2997. (c)
Aikawa, K.; Hioki, Y.; Mikami, K. Org. Lett. 2010, 12, 5716. (d)
Zhang, G.-W.; Meng, W.; Ma, H.; Nie, J.; Zhang, W.-Q.; Ma, J.-A.
Angew. Chem. Int. Ed. 2011, 50, 3538. (e) Ohshima, T.; Kawabata,
T.; Takeuchi, Y.; Kakinuma, T.; Iwasaki, T.; Yonezawa, T.; Mura-
kami, H.; Nishiyama, H.; Mashima, K. Angew. Chem. Int. Ed.
2011, 50, 6296. (f) Wang, T.; Niu, J.-L.; Liu, S.-L.; Huang, J.-J.;
Gong, J.-F.; Song, M.-P. Adv. Synth. Catal. 2013, 355, 927. (g)
Dhayalan, V.; Murakami, R.; Hayashi, M. Asian J. Chem. 2013, 25,
7505. (h) Cook, A. M.; Wolf, C. Angew. Chem. Int. Ed. 2016, 55,
2929. (i) Ito, J.-i.; Ubukata, S.; Muraoka, S.; Nishiyama, H. Chem.
Eur. J. 2016, 22, 16801.
(15) Nie, J.; Guo, H.-C.; Cahard, D.; Ma, J.-A. Chem. Rev. 2011,
111, 455.
(16) Trost, B. M.; Weiss, A. H. Adv. Synth. Catal. 2009, 351,
963.
(17) (a) Müller, K.; Faeh, C.; Diederich, F. Science 2007, 317,
1881. (b) Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V.
Chem. Soc. Rev. 2008, 37, 320. (c) Gillis, E. P.; Eastman, K. J.; Hill,
M. D.; Donnelly, D. J.; Meanwell, N. A. J. Med. Chem. 2015, 58,
8315.
(18) Vrouenraets, S. M. E.; Wit, F. W. N. M.; van Tongeren, J.;
Lange, J. M. A. Expert Opin. Pharmacother. 2007, 8, 851.
(19) Chinkov, N.; Warm, A.; Carreira, E. M. Angew. Chem. Int.
Ed. 2011, 50, 2957.
(20) For other asymmetric catalytic procedures to implement
this quaternary carbon stereocenter, see: (a) Kawai, H.; Kitaya-
ma, T.; Tokunaga, E.; Shibata, N. Eur. J. Org. Chem. 2011, 5959.
(b) Okusu, S.; Kawai, H.; Yasuda, Y.; Sugita, Y.; Kitayama, T.;
Tokunaga, E.; Shibata, N. Asian J. Org. Chem. 2014, 3, 449. (c)
Okusu, S.; Hirano, K.; Yasuda, Y.; Tanaka, J.; Tokunaga, E.; Fu-
kaya, H.; Shibata, N. Org. Lett. 2016, 18, 5568.
(21) No product is observed in the absence of Et3N but catalyt-
ic amounts are sufficient. See Supporting Information for reac-
tions with other bases.
(22) (a) Díez-González, S.; Nolan, S. P. Coord. Chem. Rev.
2007, 251, 874. (b) Díez-González, S.; Marion, N.; Nolan, S. P.
Chem. Rev. 2009, 109, 3612.
(23) Coe, B. J.; Glenwright, S. J. Coord. Chem. Rev. 2000, 203, 5.
(24) This trans-effect becomes apparent when comparing Ru1
with the related complex [Ru(2,2’-bipyridine)2(MeCN)2]2+. Ru1
features both longer Ru-N bonds to the coordinated MeCN lig-
ands (structural trans-effect) which are at the same time more
labile as revealed by ligand exchange measurements (kinetic
trans-effect). See the Supporting Information for more details.
(7) (a) Hartung, J.; Grubbs, R. H. J. Am. Chem. Soc. 2013, 135,
10183. (b) Hartung, J.; Dornan, P. K.; Grubbs, R. H. J. Am. Chem.
Soc. 2014, 136, 13029.
(8) Kaufhold, O.; Hahn, F. E.; Pape, T.; Hepp, A. J. Organomet.
Chem. 2008, 693, 3435.
(9) For selected Ru-PyNHC complexes, see: (a) Son, S. U.;
Park, K. H.; Lee, Y.-S.; Kim, B. Y.; Choi, C. H.; Lah, M. S.; Jang, Y.
H.; Jang, D.-J.; Chung, Y. K. Inorg. Chem. 2004, 43, 6896. (b)
Cheng, Y.; Sun, J.-F.; Yang, H.-L.; Xu, H.-J.; Li, Y.-Z.; Chen, X.-T.;
Xue, Z.-L. Organometallics 2009, 28, 819. (c) Dakkach, M.;
Fontrodona, X.; Parella, T.; Atlamsani, A.; Romero, I.; Rodríguez,
M. Adv. Synth. Catal. 2011, 353, 231. (d) Norris, M. R.; Concep-
cion, J. J.; Harrison, D. P.; Binstead, R. A.; Ashford, D. L.; Fang,
Z.; Templeton, J. L.; Meyer, T. J. J. Am. Chem. Soc. 2013, 135, 2080.
(e) Leigh, V.; Ghattas, W.; Lalrempuia, R.; Müller-Bunz, H.;
Pryce, M. T.; Albrecht, M. Inorg. Chem. 2013, 52, 5395. (f) Bar-
bante, G. J.; Francis, P. S.; Hogan, C. F.; Kheradmand, P. R.; Wil-
son, D. J. D.; Barnard, P. J. Inorg. Chem. 2013, 52, 7448. (g) Saha,
B.; Sengupta, G.; Sarbajna, A.; Dutta, I.; Bera, J. K. J. Organomet.
Chem. 2014, 771, 124. (h) Olguín, J.; Díaz-Fernández, M.; La Cruz-
Cruz, J. I. de; Paz-Sandoval, M. A. J. Organomet. Chem. 2016, 824,
33.
(10) For related auxiliary-mediated syntheses of enantiopure
transition metal complexes, see for example: (a) Gong, L.; Mul-
cahy, S. P.; Harms, K.; Meggers, E. J. Am. Chem. Soc. 2009, 131,
9602. (b) Chepelin, O.; Ujma, J.; Wu, X.; Slawin, A. M. Z.; Pitak,
M. B.; Coles, S. J.; Michel, J.; Jones, A. C.; Barran, P. E.; Lusby, P.
J. J. Am. Chem. Soc. 2012, 134, 19334. (c) Davies, D. L.; Singh, K.;
ACS Paragon Plus Environment