2464
C. Wang et al. / Tetrahedron Letters 52 (2011) 2462–2464
Table 3
Acknowledgments
Scope of aryl-substituted epoxides
Ar
This research was supported by the National Natural Science
Foundation of China (20802044, 21021001), the National Basic Re-
search Program of China (973 Program, 2010CB833200), and RFDP
(200806101091).
O
O
t-BuLi/TMEDA
Et2O, -98 o
R1
Et3SiO
OH
Ph R1 R2
5m-5q (E onlyb)
Yieldc
+
Ar
Ph
SiEt3
C
R2
1a
2b-2f
Entrya
1
Epoxide
Product
OSiEt3
Supplementary data
O
O
2b
p-Cl-Ph
Ph-p-Cl
Ph
Ph
Ph
58%
54%
78%
74%
5m
Supplementary data (experimental procedures and spectra data
for products) associated with this article can be found, in the online
OH
OSiEt3
2c
p-Me-Ph
Ph-p-Me
2
3
4
5n
OH
References and notes
O
OSiEt3
Ph
2d
2e
Ph
1. (a) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063–2192;
(b) Kobayashi, S.; Manabe, K.; Ishitani, H.; Matsuo, J.-I. Sci. Synth. 2002, 4,
317–369.
2. Palomo, C.; Oiarbide, M.; Garcia, J. M. Chem. Soc. Rev. 2004, 33, 65–75.
3. Danishefsky, S. Acc. Chem. Res. 1981, 14, 400–406.
4. (a) Chai, Y.; Hong, S.-P.; Lindsay, H. A.; McFarland, C.; McIntosh, M. C.
Tetrahedron 2002, 58, 2905–2928; (b) Castro, A. M. M. Chem. Rev. 2004, 104,
2939–3002.
5. (a) Kuwajima, I.; Kato, M. Tetrahedron Lett. 1980, 21, 623–626; (b) Heathcock, C.
H.; Buse, C. T.; Kleschick, W. A.; Pirrung, M. C.; Sohn, J. E.; Lampe, J. J. Org. Chem.
1980, 45, 1066–1081; (c) Corey, E. J.; Gross, A. W. Tetrahedron Lett. 1984, 25,
495–498; (d) Hall, P. L.; Gilchrist, J. H.; Collum, D. B. J. Am. Chem. Soc. 1991, 113,
9571–9574.
5o
5p
Me
Me
OH
O
OSiEt3
Ph
Ph
Ph
Ph
Ph
Ph
O
Ph
OH
OSiEt3
Me
2f
Ph
5
68%
Ph
5q
Me
OH
Ph
6. (a) Evans, D. A.; Wu, J.; Masse, C. E.; MacMillan, D. W. C. Org. Lett. 2002, 4,
3379–3382; (b) Zhang, Y.-H.; Shibatomi, K.; Yamamoto, H. J. Am. Chem. Soc.
2004, 126, 15038–15039; (c) Cardinal, D. B.; Guerin, B.; Guindon, Y. J. Org.
Chem. 2005, 70, 776–784; (d) Fujisawa, H.; Takahashi, E.; Mukaiyama, T. Chem.
Eur. J. 2006, 12, 5082–5093; (e) Corkey, B. K.; Toste, F. D. J. Am. Chem. Soc. 2007,
129, 2764–2765; (f) Kokubo, M.; Ogawa, C.; Kobayashi, S. Angew. Chem., Int. Ed.
2008, 47, 6909–6911; (g) Mikami, K.; Kawakami, Y.; Akiyama, K.; Aikawa, K. J.
Am. Chem. Soc. 2007, 129, 12950–12951; (h) Clift, M. D.; Taylor, C. N.; Thomson,
R. J. Org. Lett. 2007, 9, 4667–4669.
7. (a) Ishii, A.; Kojima, J.; Mikami, K. Org. Lett. 1999, 1, 2013–2016; (b) Ho, C. Y.;
Ohmiya, H.; Jamison, T. F. Angew. Chem., Int. Ed. 2008, 47, 1893–1895; (c)
Tsubouchi, A.; Enatsu, S.; Kanno, R.; Takeda, T. Angew. Chem., Int. Ed. 2010, 49,
7089–7091.
a
Reaction conditions: acylsilane 1a (1.0 equiv), epoxide 2 (1.2 equiv), t-BuLi
(1.2 equiv), TMEDA (6.0 equiv); 0.12 M in Et2O at ꢀ98 °C.
b
The stereoselectivity was determined by 1H NMR spectroscopy.
Isolated yield after purification by silica gel column chromatography.
c
SiEt3
SiEt3
R
O
-
-
R1
R2
R1
R2
O
R
vs
Ar
Ar
O
O
4-C1 (favorable)
4-C2 (unfavorable)
8. (a) Satoh, T. Chem. Rev. 1996, 96, 3303–3326; (b) Hodgson, D. M.; Gras, E.
Synthesis 2002, 1625–1642.
9. Patrocinio, A. F.; Moran, P. J. S. J. Braz. Chem. Soc. 2001, 12, 7–31.
10. (a) Reich, H. J.; Olson, R. E.; Clark, M. C. J. Am. Chem. Soc. 1980, 102, 1423–1424;
(b) Enda, J.; Kuwajima, I. J. Am. Chem. Soc. 1985, 107, 5495.
Ar
E
HO
R2
R1
Et3SiO
OH
Z
Et3SiO
Ar
R
R1 R2
R
6
11. (a) Brook, A. G. Acc. Chem. Res. 1974, 7, 77–84; (b) Moser, W. H. Tetrahedron
2001, 57, 2065–2084.
5
12. Although similar lithium alkoxide intermediate was also proposed in Hartel’s
preparation of b-hydroxy silyl enol ethers, the approach through addition of
Figure 1. Model analysis for the high E/Z-stereoselectivity.
silyllithium reagent to
a,b-epoxyketones does not work for generation of
1. m-CPBA,
toluene/NaHCO3 (aq), rt
tetrasubstituted silyl enol ethers, see: (a) Robertson, B. D.; Hartel, A. M.
Tetrahedron Lett. 2008, 49, 2088–2090; (b) Baker, H. K.; Hartel, A. M.
Tetrahedron Lett. 2009, 50, 4012–4014.
Ph
O
OH
Me
Et3SiO
OH
Ph
2. p-TsOH (cat),
THF, rt
13. Xin, L. H.; David, A. N.; Johnson, J. S. Org. Lett. 2002, 4, 2957–2960.
14. Although both THF and Et2O are ethereal solvents, THF is generally is believed
to be a stronger ligand than Et2O due to its lower steric requirements when
associating with alkyllithium (Lucht, B.L.; Collum, D.B. Acc. Chem. Res. 1999, 32,
1035–1042.). More insightful analysis is still needed to explain how these two
solvents affect our reaction to give quite different reactivities, especially when
6.0 equiv TMEDA is used as a bidentate ligand.
15. Although formation of the corresponding b-silyloxy ketone is possible for Z-
isomer 6 via O to O silyl transfer, no such compounds were observed after
isolation.
16. The relative stereochemistry of syn-7 was assigned by comparison with
literature results: (a) Clerici, A.; Porta, O. Synth. Commun. 1988, 18, 2281–2287;
(b) Clerici, A.; Porta, O. J. Org. Chem. 1989, 54, 3872–3878.
17. Adam, W.; Wirth, T. Acc. Chem. Res. 1999, 32, 703–710.
18. The authors thank referees’ helpful suggestions for proposing this mechanism
model.
Ph OH
Ph Me
5o
7 (syn)
50%
anti
Ar
complete syn-selectivity
Et3SiO
Ph
Me
A 1,2
α'
O
O
H
Ph
α
H
O
O
H
α
O
O
H
vs
Et3SiO
H
O
O
Ph
Ph
Me
o
o
A 1,3
α ≈
α' ≈
60
120 ;
Ar
H
TS-I (severe A 1,3 strain)
TS-II (negligible A 1,2 strain)
Scheme 2.