2932
G. Wei et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2930–2933
H
N
H
N
O
O
OR1
b
a
4
5
OPMB
O
O
O
O
HO
R1O
O
PMBO
O
OH
O
R2O
15 R1 = PMB, R2 = Ac
1
O
R2O
c
3
R2O
R
1 = R2 = H
R2O
R2O
OR2
Scheme 3. Synthesis of solamargine 1. Reagents and conditions: (a) NIS, AgOTf, CH2Cl2, ꢀ50 °C, 2 h, 65%; (b) 2, AgOTf, CH2Cl2, ꢀ10 °C, 2 h, 81%; (c) 10% TFA in CH2Cl2, ꢀ15 °C,
1 h; 0.3 M NaOH, MeOH, rt, 4 h, 80% for two steps.
6. Mazur, Y.; Danieli, N.; Sondheimer, F. J. Am. Chem. Soc. 1960, 82, 5889.
7. Bird, G. J.; Collins, D. J.; Eastwood, F. W.; Exter, R. H.; Romanelli, M. L.; Small, D.
D. Aust. J. Chem. 1979, 32, 783.
8. Puri, R.; Wong, T. C.; Puri, R. K. Magn. Reson. Chem. 1993, 31, 278.
9. Nashed, M. A.; Anderson, L. Tetrahedron Lett. 1976, 17, 3530.
10. Garegg, P. J. Pure Appl. Chem. 1984, 56, 849.
11. A general procedure for the glycosylation was described as follows: Silver triflate
(AgOTf, 0.3 equiv of 5) was added to a solution of N-iodosuccinimide (NIS,
1.5 equiv of 5) in a mixture of CH2Cl2/toluene (10:1, v/v). To a mixture of 5
(1.2 equiv of 4) and 4 in dry CH2Cl2 at ꢀ50 °C under nitrogen was added
dropwise the above solution of NIS/AgOTf and the progress was monitored by
TLC analysis. After complete disappearance of the starting materials, the
reaction was quenched by adding a 10% aq Na2S2O3 solution. The organic layer
was washed with 10% aq Na2S2O3 solution, dried over Na2SO4, and
concentrated in vacuo. The residue was purified by preparative HPLC to
obtain the pure product.
Table 1
Cytotoxicity of compound 1 on seven tumor cell lines (IC50, l
M)a
HeLa
A549
MCF-7
K562
HCT116
U87
HepG2
1
6.0
8.0
2.1
5.2
3.8
3.2
>30
2.5
9.8
Cisplatin
26.3
>30
17.0
23.1
18.5
a
Values are means of three independent experiments.
Table 2
Cytotoxicity of compounds 1 on two normal cell lines (IC50, l
M)a
HL7702
H9C2
>20
12. Hansen, T.; Daasbjerg, K.; Skrydstrup, T. Tetrahedron Lett. 2000, 41, 8645.
13. Zhan, Z. Y.; Ollmann, I. R.; Ye, X. S.; Wischnat, R.; Baasov, T.; Wong, C. H. J. Am.
1
13.5
a
Chem. Soc. 1999, 121, 734.
Values are means of three independent experiments.
14. The selected physical data. Compound 4: ½a D25
ꢁ ꢀ112 (c 0.81, CHCl3) [lit.
7
½
a 2D6
ꢁ
ꢀ116.7 (c 0.62, CHCl3)]. Selected 1H NMR (400 MHz, CDCl3): d 0.82 (s, 3H,
H-18), 0.84 (d, 3H, J = 6.2 Hz, H-27), 0.96 (d, 3H, J = 7.2 Hz, H-21), 1.03 (s, 3H, H-
lowing the standard MTT assay.15 Tables 1 and 2 show the inhibi-
tion of tumor cell growth by solamargine 1 with IC50 ranging from
2.1 to 8.0 lM, but exhibited a lower cytotoxicity to the normal
hepatocyte cell HL7702.
In conclusion, the natural product solamargine has been
chemically synthesized in 13 steps in a 10.5% overall yield starting
from the natural abundant diosgenin. Application of one-pot
reductive-cyclization to form the spirosolan derivative followed
by condensation with a partially protected glucopyranosyl donor
has significantly simplified the saponin synthesis. The approach
described here should be valuable for the related molecule16
design, synthesis, and bioactivity screening.
19), 2.20–2.33 (m, 2H, H-4a, H-4b), 2.58–2.68 (m, 2H, H-26a, H-26b), 3.48–3.55
(m, 1H, H-3a
), 4.28–4.30 (m, 1H), 5.35 (d, 1H, J = 5.1 Hz, H-6); selected 13C
NMR (100 MHz, CDCl3): d 15.08, 16.22, 19.07, 19.27, 20.86, 30.16, 31.46, 31.66,
32.02, 32.11, 32.12, 33.99, 36.62, 37.24, 39.90, 40.52, 41.30, 42.30, 47.63, 50.19,
56.52, 62.91, 71.65, 78.98, 98.14, 121.24, 140.84. ESI-HRMS calcd for
C
27H43NO2: 413.3294 [M]+, found: 414.3364 [M+H]+. Compound 3: ½a 2D5
ꢁ ꢀ43
(c 0.55, CHCl3); selected 1H NMR (400 MHz, CDCl3, 25 °C): d 0.81 (s, 3H, H-18),
0.86 (d, 3H, J = 6.2 Hz, H-27), 0.96 (d, 3H, J = 7.2 Hz, H-21), 1.03 (s, 3H, H-19),
2.60–2.66 (m, 2H, H-26a, H-26b), 3.36–3.49 (m, 3H), 3.55–3.60 (m, 2H), 3.66
(dd, 1H, J = 5.4, 10 Hz, H-6aI), 3.72 (dd, 1H, J = 5.4, 10 Hz, H-6bI), 3.80 (s, 6H,
I
I
I
CH3OPhCH2), 4.32 (m, 1H, H-16), 4.36 (d, 1H, J1;2 = 7.8 Hz, H-1 ), 4.50 (s, 2H,
CH3OPhCH2), 4.72 (d, 1H, J = 11 Hz, one proton of CH3OPhCH2), 4.88 (d, 1H,
J = 11 Hz, one proton of CH3OPhCH2), 5.34 (d, 1H, J = 5.0 Hz, H-6), 6.85–7.32 (m,
8H, Ph); selected 13C NMR (100 MHz, CDCl3): d 15.35, 16.36, 19.19, 19.39,
20.87, 29.68, 29.71, 31.20, 31.43, 31.76, 32.09, 32.15, 36.87, 37.26, 38.90, 39.80,
40.62, 42.38, 47.67, 50.10, 55.28 (2 C), 56.45, 62.94, 70.30, 71.81, 73.29, 74.10,
74.13, 74.26, 79.04, 83.42 (2 C), 98.40, 101.26, 121.79, 140.40, 159.31, 159.39.
ESI-HRMS calcd for
C
49H69NO9: 815.4972 [M]+, found: 816.5042 [M+H]+.
Acknowledgments
Compound 15: ½a 2D5
ꢁ
+ 68 (c 0.6, CHCl3); selected 1H NMR (400 MHz, CDCl3): d
0.81 (s, 3H, H-18), 0.88 (d, 3H, J = 6.2 Hz, H-27), 1.01 (m, 6H, H-21, 19), 1.19–
1.26 (m, 6H, H-6II, 6III), 1.71, 1.72, 1.87, 2.01, 2.03, 2.05 (6 s, 6 ꢂ 3H, CH3CO),
2.62–2.68 (m, 2H, H-26a, H-26b), 3.36–3.57 (m, 7H), 3.67–3.72 (m, 2H), 3.78 (2
This work was supported in partial by NNSF of China (projects
30701043, 20732001, 20890112) and project 2009ZX09501-011.
We would like to thank Dr. Vicky Gibson of Carbosynth for helping
with the manuscript preparation and Dr. Jianjun Zhang of CAU for
providing compounds 2 and 12 as the starting materials.
I
I
s, 2 ꢂ 3H, CH3OPhCH2), 4.32–4.34 (m, 1H, H-16), 4.39 (d, 2H, J1;2 = 7.8 Hz, H-
1I), 4.48 (s, 2H, CH3OPhCH2), 4.57 (d, 1H, J = 10.0 Hz, one proton of CH3OPhCH2),
4.63 (dd, 1H, J = 2.6, 4.0 Hz, H-2II), 4.68 (dd, 1H, J = 2.6, 4.0 Hz, H-2III), 4.74 (d,
1H, J = 10.0 Hz, one proton of CH3OPhCH2), 4.98–5.04 (m, 3H, H-3III, 4II, 4III),
5.10 (dd, 1H, J = 4.0, 8.6 Hz, H-3II), 5.19 (d, 1H, J = 2.0 Hz, H-1II), 5.23 (d, 1H,
J = 2.0 Hz, H-1III), 5.34 (d, 1H, J = 5.0 Hz, H-6), 6.85–7.32 (m, 8H, Ph). 13C NMR
(100 MHz, CDCl3) d 15.3, 16.4, 17.5, 17.7, 19.3, 19.4, 20.5, 20.7, 20.8, 20.9, 22.7
25.7, 26.1, 29.7 (2 C), 29.9, 31.4, 31.9, 32.1, 32.2, 36.9, 37.3, 38.6, 39.9, 40.6,
41.3, 47.5, 50.1, 55.3 (2 C), 56.5, 62.5, 69.2, 69.3, 69.5, 70.1, 70.3, 70.4, 70.8,
72.3, 72.9 (2 C), 74.6, 74.9, 75.0, 76.0, 79.0, 81.9 (2 C), 97.1 (C-1II), 97.4 (C-1III),
98.3 (C-22), 100.7 (C-1I), 121.7 (C-6), 140.7 (C-5), 159.1 (2 C), 169.7 (2 CH3CO),
169.8 (2 CH3CO), 170.2 (CH3CO), 170.3 (CH3CO). ESI-HRMS calcd for
References and notes
1. Wanyonyi, A. W.; Chhabra, S. C.; Mkoji, Gerald; Eilert, Udo; Njue, W. M.
Phytochemistry 2002, 59, 79.
2. (a) Kuo, K. W.; Hsu, S. H.; Li, Y. P.; Lin, W. L.; Liu, L. F.; Chang, L. C.; Lin, C. C.; Lin,
C. N.; Sheu, H. M. Biochem. Pharmacol. 2000, 60, 1865; (b) Liu, L. F.; Liang, C. H.;
Shiu, L. Y.; Lin, W. L.; Lin, C. C.; Kuo, K. W. FEBS Lett. 2004, 577, 67; (c) Al Chami,
L.; Méndez, R.; Chataing, B.; O’Callaghan, J.; Usubillaga, A.; LaCruz, L. Phytother.
Res. 2003, 17, 254; (d) Maruo, V. M.; Soares, M. R.; Bernardi, M. M.; Spinosa, H.
S. Neurotoxicol. Teratol. 2003, 25, 627; (e) Heo, K. S.; Lee, S. J.; Ko, J. H.; Lim, K.;
Lim, K. T. Toxicol. In Vitro 2004, 18, 755.
C73H101NO23
:
1359.6764 [M]+, found: 1360.6833 [M+H]+. Compound 1:
1
½
a 2D5
ꢁ
ꢀ88 (c 0. 5, MeOH/CHCl3 = 1:1) [lit.
½ ꢁ ꢀ91 (c 0. 2, MeOH/
a 2D4
CHCl3 = 1:1)]. Selected 1H NMR (400 MHz, CDCl3/CD3OD = 1:1): d 0.84 (s, 3H,
H-18), 0.87 (d, 3H, J = 6.2 Hz, H-27), 0.97 (d, 3H, J = 7.0 Hz, H-21), 1.05 (s, 3H, H-
19), 1.22–1.26 (m, 6H, H-6II, 6III), 1.42–2.47 (m, 24H), 2.63–2.67 (m, 2H, H-26),
3.21-4.09 (m, 15H), 4.31–4.33 (m, 1H, H-16), 4.50 (d, 1H, J = 7.8 Hz, H-1I), 4.90
(s, 1H, H-1II), 5.24 (s, 1H, H-1III), 5.40 (d, 1H, J = 4.0 Hz, H-6). Selected 13C NMR
(100 MHz, CDCl3:CD3OD = 1:1): d 15.6, 16.9, 17.4, 17.9, 19.2 (2 C), 20.8, 28.4,
28.7, 29.2, 29.6, 30.2, 31.5, 33.4, 36.2, 38.2, 39.1, 40.5, 41.5, 42.1, 47.3, 51.1,
56.0, 61.4, 62.8, 68.2, 68.9, 69.2, 69.4, 70.5, 71.5, 73.3, 73.5, 75.5, 76.8, 77.1,
3. Shahid, M. PCT Patent WO/018604, 2003.
4. Du, Y.; Gu, G.; Wei, G.; Hua, Y.; Linhardt, R. J. Org. Lett. 2003, 5, 3627.
5. (a) Cheng, M. S.; Wang, Q. L.; Tian, Q.; Song, H. Y.; Liu, Y. X.; Li, Q.; Xu, X.; Miao,
H. D.; Yao, X. S.; Yang, Z. J. Org. Chem. 2003, 68, 3658; (b) Yu, B.; Liao, J. C.;
Zhang, J. B.; Hui, Y. Z. Tetrahedron Lett. 2001, 42, 77.