Journal of the American Chemical Society
COMMUNICATION
Chemical Physics (K2010F1) is acknowledged. The authors
thank Prof. Xumu Zhang for helpful discussions.
’ REFERENCES
(1) For recent reviews of hydrogenation of aromatic compounds, see:
(a) Dyson, P. J. Dalton Trans. 2003, 2964. (b) Glorius, F. Org. Biomol. Chem.
2005, 3, 4171. (c) Lu, S.-M.; Han, X.-W.; Zhou, Y.-G. Chin. J. Org. Chem.
2005, 25, 634. (d) Zhou, Y.-G. Acc. Chem. Res. 2007, 40, 1357. (e) Kuwano,
R. Heterocycles 2008, 76, 909.
(2) For selected examples of asymmetric reduction of quinolines, see:
(a) Wang, W.-B.; Lu, S.-M.; Yang, P.-Y.; Han, X.-W.; Zhou, Y.-G. J. Am.
Chem. Soc. 2003, 125, 10536. (b) Rueping, M.; Antonchick, A. P.;
Theissmann, T. Angew. Chem., Int. Ed. 2006, 45, 3683. (c) Zhou, H. F.;
Li, Z. W.; Wang, Z. J.; Wang, T. L.; Xu, L. J.; He, Y. M.; Fan, Q. H.; Pan, J.;
Gu, L. Q.; Chan, A. S. C. Angew. Chem., Int. Ed. 2008, 47, 8464. (d) Guo, Q.-
S.; Du, D.-M.; Xu, J. Angew. Chem., Int. Ed. 2008, 47, 759. (e) Wang, C.; Li,
C. Q.; Wu, X. F.; Pettman, A.; Xiao, J. L. Angew. Chem., Int. Ed. 2009,
48, 6524. (f) Rueping, M.; Theissmann, T. Chem. Sci. 2010, 1, 473.
(3) For examples of asymmetric reduction of isoquinolines, see: Lu,
S.-M.; Wang, Y.-Q.; Han, X.-W.; Zhou, Y.-G. Angew. Chem., Int. Ed.
2006, 45, 2260.
Figure 1. (left) Optimized bond lengths (in Å) and charges (in
parentheses) for intermediates I and II. (right) Structure of the
transition state for hydride transfer with I (bond lengths in Å).
Scheme 3. Derivatization of Hydrogenated Product 2a
(4) For selected examples of asymmetric reduction of quinoxalines, see:
(a) Mrꢀsiꢁc, N.; Jerphagnon, T.; Minnaard, A. J.; Feringa, B. L.; de Vries, J. G.
Adv. Synth. Catal. 2009, 351, 2549. (b) Tang, W. J.; Xu, L. J.; Fan, Q. H.;
Wang, J.; Fan, B. M.; Zhou, Z. Y.; Lam, K. H.; Chan, A. S. C. Angew. Chem.,
Int. Ed. 2009, 48, 9135. (c) Cartigny, D.; Nagano, T.; Ayad, T.; Genet, J. P.;
Ohshima, T.; Mashima, K.; Ratovelomanana-Vidal, V. Adv. Synth. Catal.
2010, 352, 1886. (d) Rueping, M.; Tato, F.; Schoepke, F. R. Chem.—Eur. J.
2010, 16, 2688. (e) Chen, Q.-A.; Wang, D.-S.; Zhou, Y.-G.; Duan, Y.; Fan,
H.-J.; Yang, Y.; Zhang, Z. J. Am. Chem. Soc. 2011, 133, 6126.
(5) For selected examples of asymmetric reduction of indoles, see:
(a) Kuwano, R.; Sato, K.; Kurokawa, T.; Karube, D.; Ito, Y. J. Am. Chem.
Soc. 2000, 122, 7614. (b) Kuwano, R.; Kaneda, K.; Ito, T.; Sato, K.;
Kurokawa, T.; Ito, Y. Org. Lett. 2004, 6, 2213. (c) Kuwano, R.;
Kashiwabara, M. Org. Lett. 2006, 8, 2653. (d) Kuwano, R.; Kashiwabara,
M.; Sato, K.; Ito, T.; Kaneda, K.; Ito, Y. Tetrahedron: Asymmetry 2006,
17, 521. (e) Mrꢀsiꢁc, N.; Jerphagnon, T.; Minnaard, A. J.; Feringa, B. L.; de
Vries, J. G. Tetrahedron: Asymmetry 2010, 21, 7. (f) Baeza, A.; Pfaltz, A.
Chem.—Eur. J. 2010, 16, 2036. (g) Maj, A. M.; Suisse, I.; Mꢁeliet, C.;
Agbossou-Niedercorn, F. Tetrahedron: Asymmetry 2010, 21, 2010.
(h) Wang, D.-S.; Chen, Q.-A.; Li, W.; Yu, C.-B.; Zhou, Y.-G.; Zhang, X.
J. Am. Chem. Soc. 2010, 132, 8909. (i) Wang, D.-S.; Tang, J.; Zhou, Y.-G.;
Chen, M.-W.; Yu, C.-B.; Duan, Y.; Jiang, G.-F. Chem. Sci. 2011, 2, 803.
(6) For selected examples of asymmetric reduction of furans, see:
(a) Kaiser, S.; Smidt, S. R.; Pfaltz, A. Angew. Chem., Int. Ed. 2006,
45, 5194. (b) Feiertag, P.; Albert, M.; Nettekoven, U.; Spindler, F. Org.
Lett. 2006, 8, 4133.
Notably, chiral 1-pyrrolines and related compounds are ubi-
quitous building blocks in many biologically active compounds.13
The asymmetric hydrogenation of simple pyrroles developed
here offers a facile access to these molecules. Furthermore, the
derivatization of the hydrogenated products can be conveniently
realized utilizing imine chemistry.
As illustrated in Scheme 3, reduction of 2a with DIBAL-H
afforded cis-2-methyl-5-phenylpyrrolidine (3) in quantitative
yield without loss of optical purity. In the presence of trifluor-
oacetic anhydride, 2a isomerized to 2-pyrroline 4 with a trifluor-
oacetyl group on the nitrogen atom. The enantiomeric excess
was preserved, and a yield of 88% was obtained.
In summary, a highly enantioselective Pd-catalyzed partial
hydrogenation of simple 2,5-disubstituted pyrroles using a
Brønsted acid as an activator has been successfully developed,
providing chiral 2,5-disubstituted 1-pyrrolines with up to 92% ee.
Further studies will be directed toward the extension of this
strategy to other heteroaromatics and its synthetic application.
(7) For selected examples of asymmetric reduction of pyridines, see:
(a) Glorius, F.; Spielkamp, N.; Holle, S.; Goddard, R.; Lehmann, C. W.
Angew. Chem., Int. Ed. 2004, 43, 2850. (b) Legault, C. Y.; Charette, A. B.
J. Am. Chem. Soc. 2005, 127, 8966. (c) Rueping, M.; Antonchick, A. P.
Angew. Chem., Int. Ed. 2007, 46, 4562. (d) Wang, X.-B.; Zeng, W.; Zhou,
Y.-G. Tetrahedron Lett. 2008, 49, 4922.
(8) For examples of asymmetric reduction of pyrroles, see: Kuwano,
R.; Kashiwabara, M.; Ohsumi, M.; Kusano, H. J. Am. Chem. Soc. 2008,
130, 808.
’ ASSOCIATED CONTENT
S
Supporting Information. Complete experimental proce-
b
dures and characterization data for the prepared compounds.
This material is available free of charge via the Internet at http://
pubs.acs.org.
(9) For heterogenous hydrogenation of a pyrrole modified with a
chiral auxiliary, see: Hada, V.; Tungler, A.; Szepesy, L. Appl. Catal., A
2001, 210, 165.
’ AUTHOR INFORMATION
Corresponding Author
ygzhou@dicp.ac.cn; fanhj@dicp.ac.cn
(10) For recent examples of our group’s work involving Pd-catalyzed
asymmetric hydrogenation, see: (a) Wang, Y.-Q.; Lu, S.-M.; Zhou, Y.-G.
Org. Lett. 2005, 7, 3235. (b) Wang, Y.-Q.; Zhou, Y.-G. Synlett 2006,
1189. (c) Wang, Y.-Q.; Lu, S.-M.; Zhou, Y.-G. J. Org. Chem. 2007, 72, 3729.
(d) Wang, Y.-Q.; Yu, C.-B.; Wang, D.-W.; Wang, X.-B.; Zhou, Y.-G. Org.
Lett. 2008, 10, 2071. (e) Yu, C.-B.; Wang, D.-W.; Zhou, Y.-G. J. Org. Chem.
2009, 74, 5633. (f) Chen, M.-W.; Duan, Y.; Chen, Q.-A.; Wang, D.-S.; Yu,
C.-B.; Zhou, Y.-G. Org. Lett. 2010, 12, 5075. (g) Zhou, X.-Y.; Bao, M.;
’ ACKNOWLEDGMENT
Financial support from the National Natural Science Foundation
of China (21032003 and 20921092), the National Basic Research
Program of China (2010CB833300), and Dalian Institute of
8868
dx.doi.org/10.1021/ja203190t |J. Am. Chem. Soc. 2011, 133, 8866–8869