benzo[b]furan-3-carbonyl compounds.4 For instance,
Yang et al.4cꢀg reported the synthesis of benzo[b]furan-3-
carboxylic acids, esters, and ketones via a Pd(II)-catalyzed
cascade carbonylative annulation of 2-alkynylphenols
with carbon monoxide. In their protocol, the triple bond
was activated by an acylpalladium species, which initiated
an intramolecular cyclization to afford the corresponding
benzo[b]furan compounds. From our result shown in
Scheme 1, we conceived that a double insertion of triple
bonds would occur in the reaction of 2-alkynylphenol and
carbon monoxide since 2 equiv of 2-alkynylphenol were
incorporated in the transformation.
biologically important molecules6 and frequently used as
a building block in materials science and in organic
synthesis.7 The benzofuran-2-one moiety can be found
in many natural products as well. Compounds with
this substructure usually display remarkable biolog-
ical activities.8 For instance, Calycin, extracted from
the lichen C. concolor, shows significant antibacterial
activity.8a A naturally occurring isoaurone (40,6-dihy-
droxy-4-methoxyisoaurone) from Trichosanthes kirilowii
seeds has been identified as an inhibitor of HIF-1 and NF-
κB.8b Recently, compounds containing the 3-(furan-3-
ylmethylene)furan-2(3H)-one skeleton9 were shown to be
an important class of photoswitches that complement
diarylethenes and spiropyrans.10 Upon wavelength-speci-
fic illumination, they undergo reversible color changes and
ring-closing/opening reactions which are thus of great
interest for a range of applications. Thus, generation of
the related molecules in a novel and concise pathway
would be of high interest.
Scheme 1. An Unexpected Result for the Palladium-Catalyzed
Reaction of 2-Alkynylphenol 1a with Carbon Monoxide
With the above promising result in hand, we started to
optimize conditions for the formation of 3-(benzofuran-3-
ylmethylene)benzofuran-2(3H)-ones. The screening re-
sults are shown in Table 1. To our delight, the expected
product 2a was isolated in 54% yield when PdCl2(PPh3)2
was used as a replacement (Table 1, entry 2). Only a trace
amount of product was detected when the reaction oc-
curred in the presence of K2CO3, Na2CO3, or KOAc
(Table 1, entries 3ꢀ5). No reaction took place when
tBuONa was employed as the base (Table 1, entry 6). A
comparable yield of the desired product was obtained
when DABCO was utilized (Table 1, entry 7). Neither
PdCl2 or Pd(PPh3)4 was successful in catalyzing the reac-
tion of 2-(2-phenylethynyl)phenol 1a with carbon mon-
oxide (Table 1, entries 8 and 9). Adding extra ligands
proved to be unhelpful for the outcome (Table 1, entries
10ꢀ15). Changing of the oxidant to benzoquinone (BQ)
resulted in a lower yield (Table 1, entry 16). The solvent
effect was studied as well. However, inferior results were
obtained (Table 1, entries 17ꢀ20). In terms of temperature
effects, the reaction was found to be more effective at
50°C, whichaffordedthe expectedproduct2ain62%yield
It is well-known that benzofuran is a very important
heterocycle that is broadly found in natural5 and
ꢀ
(5) For selected examples, see: (a) Maximo, P.; Lourenc-o, A.; Feio,
S. S.; Roseiro, J. C. J. Nat. Prod. 2002, 65, 175. (b) Ohta, T.; Maruyama,
T.; Nagahashi, M.; Miyamoto, Y.; Hosoi, S.; Kiuchi, F.; Yamazoe, Y.;
Tsukamoto, S. Tetrahedron 2002, 58, 6631. (c) Song, K.-S.; Raskin, I. J.
Nat. Prod. 2002, 65, 76. (d) Sritularak, B.; Likhitwitayawuid, K.;
Conrad, J.; Vogler, B.; Reeb, S.; Klaiber, I.; Kraus, W. J. Nat. Prod.
2002, 65, 589. (e) Lin, Y.-L.; Chang, Y.-Y.; Kuo, Y.-H.; Shiao, M.-S. J.
Nat. Prod. 2002, 65, 745. (f) Pacher, T.; Seger, C.; Engelmeier, D.;
Vajrodaya, S.; Hofer, O.; Greger, H. J. Nat. Prod. 2002, 65, 820. (g)
Muriithi, M. W.; Abraham, W.-R.; Addae-Kyereme, J.; Scowen, I.;
Croft, S. L.; Gitu, P. M.; Kendrick, H.; Njagi, E. N. M.; Wright, C. W. J.
Nat. Prod. 2002, 65, 956. (h) Weng, J. R.; Yen, M. H.; Lin, C. N. Helv.
Chim. Acta 2002, 85, 847. (i) Iliya, I.; Tanaka, T.; Iinuma, M.; Furusawa,
M.; Ali, Z.; Nakaya, J.; Darnaedi, D. Helv. Chim. Acta 2002, 85, 2394. (j)
Yan, K.-X.; Terashima, K.; Takaya, Y.; Niwa, M. Tetrahedron 2002, 58,
6931. (k) Cagniant, P.; Carniant, D. Adv. Heterocycl. Chem. 1975, 18,
337. (l) Donnelly, D. M. X.; Meegan, M. J. In Comprehensive Hetero-
cyclic Chemistry; Katritzky, A. R., Rees, C. W., Eds.; Pergamon Press:
Oxford, 1984; Vol. 4, pp 657ꢀ712.
(7) Example in material science: Hwu, J. R.; Chuang, K.-S.; Chuang,
S. H.; Tsay, S.-C. Org. Lett. 2005, 7, 1545. In organic synthesis:
(a) Cagniant, P.; Cagniant, D. In Advances in Heterocyclic Chemistry;
Katritzky, A. R.; Boulton, A. J., Eds.; Academic Press: New York, 1975; Vol.
18, p 337. (b) Comprehensive Heterocyclic Chemistry; Katritzky, A. R.,
Rees, C. W., Eds.; Pergamon Press: U.K., 1984; Vol. 4, p 531. (c)
Comprehensive Heterocyclic Chemistry II; Katritzky, A. R., Rees, C. W.,
Scriven, E. F. V., Eds.; Pergamon Press: Oxford, 1996; Vol. 2, p 259.
(8) For selected examples: (a) Dias, D. A.; Urban, S. Nat. Prod. Res.
2009, 23, 925. (b) Dat, N. T.; Jin, X.; Hong, Y.-S.; Lee, J. J. J. Nat. Prod.
2010, 73, 1167. (c) Lin, P.; Li, S.; Wang, S.; Yang, Y.; Shi, J. J. Nat. Prod.
2006, 69, 1629. (d) Rao, Y. S. Chem. Rev. 1976, 76, 625. (e) Pattenden, G.
Prog. Chem. Nat. Prod. 1979, 35, 133. (f) Gill, M.; Steglich, W. Prog.
Chem. Org. Nat. Prod. 1987, 51, 1. (g) Knight, D. W. Contemp. Org.
Synth. 1994, 1, 287. (h) Negishi, E.-i.; Kotora, M. Tetrahedron 1997, 53,
6707.
(6) (a) Felder, C. C.; Joyce, K. E.; Briley, E. M. J. Pharmacol. Exp.
Ther. 1998, 284, 291. (b) Yang, Z.; Hon, P. M.; Chui, K. Y.; Chang,
H. M.; Lee, C. M.; Cui, Y. X.; Wong, H. N. C.; Poon, C. D.; Fung, B. M.
Tetrahedron Lett. 1991, 32, 2061. (c) Carter, G. A.; Chamberlain, K.;
Wain, R. L. Ann. Appl. Biol. 1978, 88, 57. (d) Ingham, J. L.; Dewick,
P. M. Phytochemistry 1978, 17, 535. (e) Takasugi, M.; Nagao, S.;
Masamune, T. Tetrahedron Lett. 1979, 4675. (f) Davies, W.; Middleton,
S. Chem. Ind. (London) 1957, 599. (g) Kawaguchi, T.; Akatsuka, H.;
Morimoto, M.; Watanabe, T.; Iijima, T.; Murakami, J. PCT Int. Appl.
(2005), 142 pp. (h) McGarry, D. G.; Regan, J. R.; Volz, F. A.; Hulme, C.;
Moriarty, K. J.; Djuric, S. W.; Souness, J. E.; Miller, B. E.; Travis, J. J.;
Sweeney, D. W. Bioorg. Med. Chem. 1999, 7, 1131. (i) Hayakawa, I.;
Shioya, R.; Agatsuma, T.; Furukawa, H.; Naruto, S.; Sugano, Y.
Bioorg. Med. Chem. Lett. 2004, 14, 455. (j) Fukai, T.; Oku, Y.; Hano,
Y.; Terada, S. Planta Medica 2004, 70, 685. (k) Tsuji, E.; Ando, K.;
Kunitomo, J.-i.; Yamashita, M.; Ohta, S.; Kohno, S.; Ohishi, Y. Org.
Biomol. Chem. 2003, 1, 3139.
€
€
(9) (a) Strube, F.; Siewertsen, R.; Sonichsen, F. D.; Renth, F.; Temps,
F.; Mattay, J. Eur. J. Org. Chem. 2011, 1947. (b) Heller, H. G.; Hughes,
D. S.; Hursthouse, M. B.; Rowles, N. G. Chem. Commun. 2000, 1397.
(10) (a) Irie, M. Chem. Rev. 2000, 100, 1685. (b) Berkovic, G.;
Krongauz, V.; Weiss, V. Chem. Rev. 2000, 100, 1741.
Org. Lett., Vol. 13, No. 21, 2011
5859