2864
Z. N. Siddiqui et al. / Bioorg. Med. Chem. Lett. 21 (2011) 2860–2865
13. Baraldi, P. G.; Bovero, A.; Fruttarolo, F.; Romagnoli, R.; Tabrizi, M. A.; Preti, D.;
Table 5
Varani, K.; Borea, P. A.; Moorman, A. R. Bioorg. Med. Chem. 2003, 11, 4161.
14. Vogel, S.; Ohmayer, S.; Brunner, G.; Heilmann, J. Bioorg. Med. Chem. 2008, 16,
4286.
MIC and MFC of compounds 3a–4c, positive control griseofulvin, fluconazole
Compounds
CA
AF
TM
PM
15. Avila, H. P.; Smania, E.; Monache, F. D.; Smania, A. Bioorg. Med. Chem. 2008, 16,
9790.
MIC
MFC
MIC MFC
MIC
MFC
MIC
MFC
16. Suryawanshi, S. N.; Chandra, N.; Kumar, P.; Porwal, J.; Gupta, S. Eur. J. Med.
Chem. 2008, 43, 2473.
17. Lawrence, N. J.; Patterson, R. P.; Ooi, L. L.; Cook, D.; Ducki, S. Bioorg. Med. Chem.
Lett. 2006, 16, 5844.
18. Mojzis, J.; Varinska, L.; Mojzisova, G.; Kostova, I.; Mirossay, L. Pharmacol. Res.
2008, 57, 259.
19. Cheng, J. H.; Hung, C. F.; Yang, S. C.; Wang, J. P.; Won, S. J.; Lin, C. N. Bioorg. Med.
Chem. 2008, 16, 7270.
20. Rojas, J.; Paya, M.; Dominguez, J. N.; Ferrandiz, M. L. Bioorg. Med. Chem. Lett.
2002, 12, 1951.
21. Lahtchev, K. L.; Batovska, D. I.; Parushev, S. P.; Ubiyvovk, V. M.; Sibirny, A. A.
Eur. J. Med. Chem. 2008, 43, 2220.
22. Nerya, O.; Musa, R.; Khatib, S.; Tamir, S.; Vaya, J. Phytochemistry 2004, 65, 1389.
23. Léavai, A. J. Heterocycl. Chem. 2002, 39, 1.
24. Latif, F. M. A.; Barsi, M. A.; Maghraby, A. S.; Badr, M. Z. A.; Dopp, D. J. Indian
Chem. Soc. 1995, 72, 641.
3a
3b
3c
4a
4b
4c
25
12.5
25
25
50
50
6.25
6.25
50
25
50
25
12.5
25
25
50
50
25
50
100
100
100
25
25
12.5
25
25
50
25
6.25
6.25
50
25
50
100
100
100
25
25
12.5
25
50
50
50
25
100
>100
100
100
100
100
12.5 12.5
12.5 6.5
25
>100 >100
12.5
Gris
Flu.
25
12.5
12.5
12.5 6.5
CA; Candida albicans, AF; Aspergillus fumigatus, TM; Trichophyton mentagrophytes,
PM; Penicillium marneffei. MIC ( g/ml) = minimum inhibitory concentration, that is,
the lowest concentration of the compound to inhibit the growth of fungus com-
pletely; MFC ( g/ml) = minimum fungicidal concentration, that is, the lowest
l
l
concentration of the compound for killing the fungus completely.
25. Batulin, Y. M. Farmakol. Toksikol. 1968, 31, 533.
26. Parmar, S. S.; Pandey, B. R.; Dwivedi, C.; Harbinson, R. D. J. Pharm. Sci. 1974, 63,
1152.
27. Soni, N.; Pande, K.; Kalsi, R.; Gupta, T. K.; Parmar, S. S.; Barthwal, J. P. Res.
Commun. Chem. Pathol. Pharmacol. 1987, 56, 129.
showed more potent inhibition against all the fungal strains
(MIC = 12.5 lg/ml). The MFC of compounds were found to be two
or three or four folds higher than the corresponding MIC results.
Thus, overall the data revealed that the compounds 3a–4c have
produced the marked enhancement in the potency of these analogs
as antibacterial and antifungal agents. A comparative study with
known chalcones and pyrazolines revealed that the newly synthe-
sized compounds are equally potent as most of the reported com-
pounds. However, the mode of action of these compounds and
their effect on mammalian cell still needs to be evaluated.
The fact that readily synthesized starting materials, available
reagents along with short reaction time, no additives and simple
work-up and isolation of the products under green condition make
the current method a feasible and attractive protocol for genera-
tion of series of pyrazole derivatives in good yields. Further,
in vitro antibacterial and antifungal evaluation of compounds has
proved them as potent antimicrobial agents. The importance of
such kind of work lies in the possibility that the new compounds
might be more effective against microbes for which a thorough
study regarding the structure–activity relationship, toxicity and
their biological effects would be helpful in designing more potent
antimicrobial agents.
28. Turan-Zitouni, G.; Chevallet, P.; Kilic, F. S.; Erol, K. Eur. J. Med. Chem. 2000, 35,
635.
29. Erhan, P.; Mutlu, A.; Tayfun, U.; Dilek, E. Eur. J. Med. Chem. 2001, 36, 539.
30. Chimenti, F.; Bizzari, B.; Manna, F.; Bolasco, A.; Secci, D.; Chimenti, P.; Granese,
A.; Rivanera, D.; Lilli, D.; Scaltrito, M. M.; Brenciaglia, M. I. Bioorg. Med. Chem.
Lett. 2005, 15, 603.
31. Kumar, S.; Bawa, S.; Drahu, S.; Kumar, R.; Gupta, H. Recent Pat. Anti-Cancer Drug
Discovery 2009, 4, 154.
32. Girisha, K. S.; Kalluraya, B.; Narayana, V.; Padmashree Eur. J. Med. Chem. 2010,
45, 4640.
33. Anastas, P. T.; Warner, J. C. Green Chemistry: Theory and Practice; Oxford
University Press: Oxford, 1998.
34. Tundo, P.; Anastas, P.; Black, D. S.; Breen, J.; Collins, T.; Memoli, S.; Miyamoto,
J.; Polyakoff, M.; Tumas, W. Pure Appl. Chem. 2000, 72, 1207.
35. Dhar, D. N. Chemistry of Chalcones and Related Compounds; Wiley: New York,
1981.
36. Aboul, E. H. Y.; Wainer, I. W. Chiral Barbiturates: Synthesis Chromatographic
Resolutions and Biological activity. The Impact of Stereochemistry on Drug
Development and Use; John Willey & Sons: New York, 1997. p. 201.
37. Pawar, R. A.; Patil, A. A. Indian J. Chem. 1994, 33, 156.
38. Jursic, B. S.; Neumann, D. M. Tetrahedron Lett. 2001, 42, 8435.
39. Cruickshank, R., Duguid, J. P., Marmion, B. P., Swain, R. H. A., Eds., 12th
ed.Medicinal Microbiology; Churchill Livingstone: London, 1975; Vol. 2,.
40. Collins, A. H. Microbiological Methods, 2nd ed.; Butterworth: London, 1976.
41. Khan, Z. K. In vitro and vivo screening techniques for bioactivity screening and
evaluation, Proc. Int. Workshop UNIDO-CDRI, 1997, 210.
42. Antifungal Agents: Past, Present and Future prospects; Varma, R. S., Ed.; National
Academy of Chemistry & Biology: Lucknow, India, 1998.
43. General method for the preparation of pyrazolyl chalcones (3a–c) under
conventional heating conditions.
Acknowledgments
Financial assistance in the form of major research project [F.No.
37-15/2009 (SR)] from UGC, New Delhi, is gratefully acknowl-
edged. The authors thank SAIF, CDRI, Lucknow and SAIF, Punjab
University, Chandigarh for spectral data.
To a well stirred solution of 5-acetyl-1,3-dimethylbarbituric acid (4.52 mmol)/
5-acetylbarbituric acid (4.52 mmol)/5-acetylthiobarbituric acid (4.52 mmol) in
ethanol (15 ml)/methanol (15 ml)/acetic acid (12 ml), containing pyridine
(1 ml)/piperidine (0.5 ml)/sodium acetate (4 mmol), 5-chloro-3-methyl-1-
phenylpyrazole-4-carboxaldehyde (4.52 mmol) was added in portion. The
reaction mixture was then refluxed in a heating mantle for specified time
(Table 1) and cooled at room temperature. The yellow solid, thus, obtained was
filtered, washed with water, alcohol and dried to afford 3a–c. Further
purification was made by recrystallization from chloroform-methanol (4:1v/
v) mixture.
References and notes
1. Moneer, A. A.; Abouzid, K. A. M.; Said, M. M. Az. J. Pharm. Sci. 2002, 30, 150.
2. Tandon, V. K.; Yadav, D. B.; Chaturvedi, A. K.; Shukla, P. K. Bioorg. Med. Chem.
Lett. 2005, 15, 3288.
3. Akbas, E.; Berber, I. Eur. J. Med. Chem. 2005, 40, 401.
4. Bekhit, A. A.; Ashour, H. M. A.; Ghany, Y. S. A.; Bekhit, A. E. A.; Baraka, A. Eur. J.
Med. Chem. 2008, 43, 456.
5. Penning, T. D.; Talley, J. J.; Bertenshaw, S. R.; Carter, J. S.; Collins, P. W.; Docter,
S.; Graneto, M. J.; Lee, L. F.; Malecha, J. W.; Miyashiro, J. M.; Rogers, R. S.; Rogier,
D. J.; Yu, S. S.; Anderson, G. D.; Burton, E. G.; Cogburn, J. N.; Gregory, S. A.;
Koboldt, C. M.; Perkins, W. E.; Seibert, K.; Veenhuizen, A. W.; Zhang, Y. Y.;
Isakson, P. C. J. Med. Chem. 1997, 40, 1347.
General method for the preparation of pyrazolyl chalcones (3a–c) under thermal
heating conditions.
A
mixture
of
5-chloro-3-methyl-1-phenylpyrazole-4-carboxaldehyde
(4.52 mmol) and 5-acetyl-1,3-dimethylbarbituric acid (4.52 mmol)/5-
acetylbarbituric acid (4.52 mmol)/5-acetyl thiobarbituric acid (4.52 mmol)
was mixed well using a mortar and pestle. The reaction mixture was then
transferred into a 50 ml R.B flask and heated at 80 °C in a heating mantle for
specified time (Table 1). The progress of reaction was monitored by TLC. On
completion, reaction mixture was cooled and 25 ml of ice cold water added.
The bright yellow solid, thus, obtained was filtered, washed with water, alcohol
and dried to afford 3a–c. Further purification was made by recrystallization
from chloroform–methanol (4:1v/v) mixture.
6. Deng, X.; Mani, N. S. Org. Lett. 2008, 10, 1307.
7. Katritzky, A. R.; Wang, M.; Zhang, S.; Voronkov, M. V. J. Org. Chem. 2001, 66,
6787.
(2E)-3-(5-chloro-3-methyl-1-phenylpyrazol-4-yl)-1-(1,3-dimethyl-2,4,6-
8. Deng, X.; Mani, N. S. Org. Lett. 2006, 8, 3505.
pyrimidinetrione-5-yl)-2-propen-1-one (3a)
9. Smith, S. R.; Denhardt, G.; Terminelli, C. Eur. J. Pharmacol. 2001, 432, 107.
10. Prakash, O.; Kumar, R.; Parkash, V. Eur. J. Med. Chem. 2008, 43, 435.
11. Mahajan, R. N.; Havaldar, F. H.; Fernandes, P. S. J. Indian Chem. Soc. 1991, 68,
245.
12. Baraldi, P. G.; Manfredini, S.; Romagnoli, R.; Stevanato, L.; Zaid, A. N.;
Manservigi, R. Nucleosides, Nucleotides Nucleic Acids 1998, 17, 2165.
Yellow crystals; yield 87%, mp 263–266 °C. IR (m
max, cmÀ1, KBr): 1618 (C@C),
1664 (C@O), 1715 (C@O). 1H NMR (300 MHz, CDCl3, d, ppm): 2.59 (3H, s, CH3),
3.37 (3H, s, N–CH3), 3.40 (3H, s, N–CH3), 7.42–7.58 (5H, m, Ar-H), 8.00 (1H, d,
J = 16.2 Hz, Ha), 8.55 (1H, d, J = 15.9 Hz, Hb). ESI-MS m/z: 400.12 (M+). Anal. Calcd
for C19H17N4O4Cl: C, 56.93; H, 4.27; N, 13.97. Found: C, 56.76; H, 4.38; N, 13.91.