LETTER
Approach to Highly Functionalized Quinolines and Isoquinolines
693
5249. (g) Asao, N.; Sato, K. Org. Lett. 2006, 8, 5361.
(9) Panda, B.; Basak, S.; Hazra, A.; Sarkar, T. K. J. Chem. Res.
2010, 34, 109.
(h) Gupta, A. K.; Rhim, C. Y.; Oh, C. H.; Mane, R. S.; Han,
S.-H. Green Chem. 2006, 8, 25. (i) Beeler, A. B.; Su, S.;
Singleton, C. A.; Porco, J. A. Jr. J. Am. Chem. Soc. 2007,
129, 1413.
(10) (a) Panda, B.; Sarkar, T. K. Tetrahedron Lett. 2010, 51, 301.
(b) Panda, B.; Sarkar, T. K. Chem. Commun. 2010, 46, 3131.
(11) Indeed 1a was found to react exothermally when brought in
contact with DMAD in DCE at a similar concentration.
(12) Oxo-alkynes 1a–d were prepared from the corresponding
pyridine-2-chloro aldehydes by Sonogashira coupling;
similarly, 1e was prepared from iodoaldehyde 3 by
Sonogashira coupling.
(4) (a) During the course of our work Organ et al. reported a few
reactions of pyridine-containing oxo-alkynes in a flow
reactor under heterogeneous conditions, see: Shore, G.;
Tsimerman, M.; Organ, M. G. Beilstein J. Org. Chem. 2009,
5, 35; doi: 10.3762/bjoc.5.35. (b) For a discussion of the
merits and demerits of reactions in a flow reactor vis-à-vis
reactions in a flask, see: Valera, F. E.; Quaranta, M.; Moran,
A.; Blacker, J.; Armstrong, A.; Cabral, J. T.; Blackmond,
D. G. Angew. Chem. Int. Ed. 2010, 49, 2478.
(5) (a) Yates, F. S. In Comprehensive Heterocyclic Chemistry,
Vol. 2; Katritzky, A. R.; Rees, C. W., Eds.; Pergamon: New
York, 1984, Chap. 2.09. (b) Bentley, K. W. The
Isoquinoline Alkaloids; Harwood Academic: Amsterdam,
1998.
(6) Coffey, D. S.; Kolis, S. P.; May, S. A. In Progress in
Heterocyclic Chemistry, Vol. 14; Gribble, G. W.; Gilchrist,
T. L., Eds.; Pergamon: Amsterdam, 2002, Chap. 6.1.
(7) For recent reports on isoquinoline synthesis, see: (a) Niu,
Y.-N.; Yan, Z.-Y.; Gao, G.-L.; Wang, H.-L.; Shu, X.-Z.; Ji,
K.-G.; Liang, Y.-M. J. Org. Chem. 2009, 74, 2893.
(b) Dell’Acqua, M.; Abbiati, G.; Rossi, E. Synlett 2010,
2672; and references therein . For recent reports on
quinoline synthesis, see: (c) Kouznetsov, V. V.;
Vargas Méndez, L. Y.; Meléndez Gómez, C. M. Curr. Org.
Chem. 2005, 9, 141; and references therein. (d) Bose, D. S.;
Idrees, M.; Jakka, N. M.; Rao, J. V. J. Comb. Chem. 2010,
12, 100; and references therein.
(13) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem.
Soc. 2003, 125, 10921.
(14) An alkyne with an aryl and an ester substituent, e.g.,
PhC≡CCO2Me was found not to react either with the
electron-rich oxo-alkyne 1a or the electron-deficient oxo-
alkyne 1e; presumably in this case the HOMO–LUMO
energy difference is too high for both pairs of reactants.
(15) This Sonogashira coupling was unsuccessful (<10%) under
the classical conditions [PdCl2(PPh3)2/CuI] using a variety
of bases such as Et3N, i-Pr2NH, K2CO3, or NaHCO3.
(16) Marzi, E.; Bigi, A.; Schlosser, M. Eur. J. Org. Chem. 2001,
1371.
(17) Kim, N.; Kim, Y.; Park, W.; Sung, D.; Gupta, A. K.; Oh,
C. H. Org. Lett. 2005, 7, 5289.
(18) Even carrying out the reaction at a lower temperature (0–
15 °C) did not give any traces of the [3+2] product 6.
(19) For a discussion and computational analysis regarding [3+2]
vs. [4+2] cycloaddition of isobenzopyrylium 1,3-dipoles,
see: Straub, B. F. Chem. Commun. 2004, 1726.
(20) We also cannot rule out the possibility of autocatalysis by
the oxo-alkynes, as sometimes substrates might coordinate
and lead to the formation of even more efficient catalysts,
see: Hashmi, A. S. K.; Weyrauch, J. P.; Rudolph, M.;
Kurpejovic, E. Angew. Chem. Int. Ed. 2004, 43, 6545.
(8) Ichikawa, J.; Wada, Y.; Miyazaki, H.; Mori, T.; Kuroki, H.
Org. Lett. 2003, 5, 1455.
Synlett 2011, No. 5, 689–693 © Thieme Stuttgart · New York