observation, theoretical treatments of circularly folded macro-
cycles containing from 4 to 7 residues at the B3LYP/6-31G*
level show that the relative stability per repeating unit
increases in the order of tetramer 9 o heptamer 11 o hexamer
10 o pentamer 1 with or without explicit solvents.w
H. Q. Zeng, Org. Lett., 2009, 11, 1201; (d) Y. Yan, B. Qin,
C. L. Ren, X. Y. Chen, Y. K. Yip, R. J. Ye, D. W. Zhang,
H. B. Su and H. Q. Zeng, J. Am. Chem. Soc., 2010, 132, 5869;
(e) J.-L. Hou, H.-P. Yi, X.-B. Sha, C. Li, Z.-Q. Wu, X.-K. Jian,
L.-Z. Wu, C.-H. Tung and Z.-T. Li, Angew. Chem., Int. Ed., 2006,
45, 796; (f) D. Kanamori, T. A. Okamura, H. Yamamoto and
N. Ueyama, Angew. Chem., Int. Ed., 2005, 44, 969.
The strength of these internally located intramolecular
H-bonds in 1–7 was quantitatively measured by amide
proton–deuterium (H–D) exchange experiments carried out
at 2.0 mM (Table 3).1a,c,d Since the intermolecular aggregation
in 1–7 is an unlikely event,w1a the half-lives of H–D exchange
should enable the direct correlation between the H–D half-life
and H-bond strength. From entry 6, it is evidenced that the
steric crowding involving bulkier ethoxy groups in 6 does not
impede the efficient H–D exchange, and amide protons can be
accessed well by D2O molecules. The determined half-life
values show that the H-bond strength among 1–7 highly likely
increases in the order of 6 o 1 o 5 o 2 o 3 o 4 o 7.
A further examination of these H–D exchange values shows
that the exteriorly located electron-donating alkoxy side
chains (i) cause a large variation in H-bond strength and
(ii) make intramolecular H-bonds in pentamers 2–4 and 7
stronger than those found in pentamers 1 and 6 that carry no
side chains. These findings agree well with the similar trends
seen for a series of H-bonding stabilized crescent-shaped
oligomers recently reported by us.1d Comparison of H–D
exchange data for amide protons in 1 (t1/2 = 1.49 h) and 6
(t1/2 = 0.22 h) suggests much weakened intramolecular
H-bonds in 6 relative to those in 1. Largely, this may be due
to the bulkier interior ethyl groups in 6 that cause a larger
backbone distortion and so weaken the H-bonds in 6 more
than those in 1. Computationally, the aromatic backbone in 6
is more distorted than that in 1.w
Our current investigation makes possible the highly selective
production of circularly folded aromatic pentamers via
H-bonding assisted one-pot macrocyclization reactions with
excellent yields of B50% under mild conditions within a day.
This greener protocol is far more cost-effective and time-
saving than the lengthy step-by-step process, giving circular
pentamers in about 5% yields after months of effort
as previously reported by us.1a,b The established one-pot
macrocyclization protocol should enable a facile access to
diverse pentamers for targeting biological pentamers,1a and
for fine-tuning their already demonstrated high ion-binding
affinity and selectivity,1b especially when coupled with the
demethylating methodologies for the selective removal of
interior methyl groups that are currently under investigation.
Financial support of this work by the NUS AcRF Tier 1
grants (R-143-000-375-112 and R-143-000-398-112 to H.Z.),
A*STAR BMRC research consortia (R-143-000-388-305 to
H.Z.) and A*STAR SERC grant (M47070020 to H.S.) is
acknowledged.
2 For some reviews on shape-persistent macrocycles, see:
(a) J. L. Sessler and D. Seidel, Angew. Chem., Int. Ed., 2003, 42,
5134; (b) R. Misra and T. K. Chandrashekar, Acc. Chem. Res., 2008,
41, 265; (c) W. Zhang and J. S. Moore, Angew. Chem., Int. Ed.,
2006, 45, 4416; (d) N. E. Borisova, M. D. Reshetova and
Y. A. Ustynyuk, Chem. Rev., 2007, 107, 46; For pillar[5]arene-based
macrocycles whose pentameric backbone is 3D-shaped rather than
2D planar, see: (e) C. Han, F. Ma, Z. Zhang, B. Xia, Y. Yu and
F. Huang, Org. Lett., 2010, 12, 4360; (f) Z. Zhang, Y. Luo, B. Xia,
C. Han, Y. Yu, X. Chena and F. Huang, Chem. Commun., 2011,
DOI: 10.1039/c0cc03732j.
3 For H-bonded macrocycles, see: (a) Z. T. Li, J. L. Hou, C. Li and
H. P. Yi, Chem.–Asian J., 2006, 1, 766; (b) S. M. Hecht and I. Huc,
Foldamers: Structure, Properties and Applications, Wiley-VCH,
2007; (c) B. Gong, Acc. Chem. Res., 2008, 41, 1376; (d) L. Yuan,
W. Feng, K. Yamato, A. R. Sanford, D. Xu, H. Guo and B. Gong,
J. Am. Chem. Soc., 2004, 126, 11120; (e) A. M. Zhang, Y. H. Han,
K. Yamato, X. C. Zeng and B. Gong, Org. Lett., 2006, 8, 803;
(f) H. C. Ahn, S. M. Yun and K. Choi, Chem. Lett., 2008, 10;
(g) W. Feng, K. Yamato, L. Q. Yang, J. S. Ferguson, L. J. Zhong,
S. L. Zou, L. H. Yuan, X. C. Zeng and B. Gong, J. Am. Chem. Soc.,
2009, 131, 2629; (h) H. Jiang, J. M. Leger, P. Guionneau and I. Huc,
Org. Lett., 2004, 6, 2985; (i) L. Y. Xing, U. Ziener, T. C. Sutherland
and L. A. Cuccia, Chem. Commun., 2005, 5751; (j) J. K. H. Hui and
M. J. MacLachlan, Chem. Commun., 2006, 2480; (k) J. S. Ferguson,
K. Yamato, R. Liu, L. He, X. C. Zeng and B. Gong, Angew. Chem.,
Int. Ed., 2009, 48, 3150; (l) A. Filarowski, A. Koll and L. Sobczyk,
Curr. Org. Chem., 2009, 13, 172; (m) F. J. Carver, C. A. Hunter and
R. J. Shannon, J. Chem. Soc., Chem. Commun., 1994, 1277;
(n) F. Bohme, C. Kunert, H. Komber, D. Voigt, P. Friedel,
M. Khodja and H. Wilde, Macromolecules, 2002, 35, 4233;
(o) A. Srinivasan, T. Ishizuka, A. Osuka and H. Furuta, J. Am.
Chem. Soc., 2003, 125, 878; (p) J. B. Lin, X. N. Xu, X. K. Hang and
Z. T. Li, J. Org. Chem., 2008, 73, 9403; (q) E. Berni, C. Dolain,
B. Kauffmann, J.-M. Lger, C. Zhan and I. Huc, J. Org. Chem.,
2008, 73, 2687; (r) Y. Y. Zhu, C. Li, G. Y. Li, X. K. Jiang and
Z. T. Li, J. Org. Chem., 2008, 73, 1745; (s) L. Q. Yang, L. J. Zhong,
K. Yamato, X. H. Zhang, W. Feng, P. C. Deng, L. H. Yuan,
X. C. Zeng and B. Gong, New J. Chem., 2009, 33, 729; (t) F. Li,
Q. Gan, L. Xue, Z.-M. Wang and H. Jiang, Tetrahedron Lett., 2009,
50, 2367.
4 For some recent reviews on foldamers, see (a) S. H. Gellman, Acc.
Chem. Res., 1998, 31, 173; (b) K. D. Stigers, M. J. Soth and
J. S. Nowick, Curr. Opin. Chem. Biol., 1999, 3, 714; (c) B. Gong,
Chem.–Eur. J., 2001, 7, 4336; (d) D. J. Hill, M. J. Mio, R. B. Prince,
T. S. Hughes and J. S. Moore, Chem. Rev., 2001, 101, 3893;
(e) R. P. Cheng, S. H. Gellman and W. F. DeGrado, Chem. Rev.,
2001, 101, 3219; (f) M. S. Cubberley and B. L. Iverson, Curr. Opin.
Chem. Biol., 2001, 5, 650; (g) A. R. Sanford and B. Gong, Curr. Org.
Chem., 2003, 7, 1649; (h) A. R. Sanford, K. Yamato, X. Yang,
L. Yuan, Y. Han and B. Gong, Eur. J. Biochem., 2004, 271, 1416;
(i) C. Schmuck, Angew. Chem., Int. Ed., 2003, 42, 2448; (j) I. Huc,
Eur. J. Org. Chem., 2004, 17; (k) C. M. Goodman, S. Choi,
S. Shandler and W. F. DeGrado, Nat. Chem. Biol., 2007, 3, 252;
(l) Z. T. Li, J. L. Hou and C. Li, Acc. Chem. Res., 2008, 41,
1343; (m) W. S. Horne and S. H. Gellman, Acc. Chem. Res.,
2008, 41, 1399; (n) X. Li, Y.-D. Wu and D. Yang, Acc. Chem.
Res., 2008, 41, 1428; (o) I. Saraogi and A. D. Hamilton, Chem. Soc.
Rev., 2009, 38, 1726; (p) X. Zhao and Z. T. Li, Chem. Commun.,
2010, 46, 1601.
5 (a) S. Guieu, A. K. Crane and M. J. MacLachlan, Chem. Commun.,
2010, 46, 1169; (b) A. R. Sanford, L. Yuan, W. Feng, K. Yamato,
R. A. Flowersb and B. Gong, Chem. Commun., 2005, 4720;
(c) A. J. Helsel, A. L. Brown, K. Yamato, W. Feng, L. H. Yuan,
A. J. Clements, S. V. Harding, G. Szabo, Z. F. Shao and B. Gong,
J. Am. Chem. Soc., 2008, 130, 15784; (d) P. S. Shirude, E. R. Gillies,
S. Ladame, F. Godde, K. Shin-Ya, I. Huc and S. Balasubramanian,
J. Am. Chem. Soc., 2007, 129, 11890.
Notes and references
1 (a) B. Qin, X. Y. Chen, X. Fang, Y. Y. Shu, Y. K. Yip, Y. Yan,
S. Y. Pan, W. Q. Ong, C. L. Ren, H. B. Su and H. Q. Zeng, Org.
Lett., 2008, 10, 5127; (b) B. Qin, C. L. Ren, R. J. Ye, C. Sun,
K. Chiad, X. Y. Chen, Z. Li, F. Xue, H. B. Su, G. A. Chass and
H. Q. Zeng, J. Am. Chem. Soc., 2010, 132, 9564; (c) Y. Yan, B. Qin,
Y. Y. Shu, X. Y. Chen, Y. K. Yip, D. W. Zhang, H. B. Su and
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 5419–5421 5421