Table 1. One-Pot ScissionꢀAlkylation
Scheme 2
I2
Nu
yield
(%)b
entry
(equiv)a
t1 °C f t2 °C
(equiv)
1
2
3
4
5
1.0
1.0
0.5
0.5
0.5
0 f 25
ꢀ78 f ꢀ10
0 f 25
3
35
36
51
42
78
3
3
0 f 25
3c
5
0 f 25
a DIB (2 equiv), I2, hν, 25 °C, 3 h; then t1 °C, CH2dC(OTMS)Ph and
BF3•OEt2 (2 equiv), t1 °C f t2 °C, 3 h. b The yields are given for products
purified by chromatography on silica gel. c Boron trifluoride was added
before the nucleophile.
Moreover, the choice of compound 2a as the substrate
would highlight whether a small-sized R group can induce
good stereoselectivities in the alkylation step.
The one-pot decarboxylationꢀalkylation couples radi-
cal and ionic processes and takes place under mild condi-
tions. Thus, when compound 2a (Scheme 2) is treated with
(diacetoxyiodo)benzene (DIB) and iodine, in the presence
of visible light (sunlight or 80 W tungsten-filament lamps),
a carboxyl radical is formed which undergoes scission to
give a C-radical 5.9 The radical reacts with iodine, to give
the unstable R-iodoamide 6, which reacts with acetate ions
from DIB to give the N,O-acetal 7. In the presence of a
Lewis acid, the acyliminium ion 8 is formed, which can be
trapped by carbon nucleophiles,10 affording the aminoal-
cohols 1a.
The best conditions for the one-pot scissionꢀalkylation
process were studied using the conversion 2af9 (Table 1).
The different temperatures tried (entries 1 and 2) gave
similar results. However, the amount of iodine was im-
portant (entries 1 and 3), and the best yields were obtained
with substoichiometric amounts. The order of addition
was studied as well (entries 3 and 4) and the amount of
nucleophile (entries 3 and 5). The optimized conditions are
given in entry 5. Remarkably, an excellent stereoselectivity
was obtained (dr >99:1).
ꢀ
(7) (a) For other recent works on chiral amino alcohols, see: Metro,
T. X.; Gomez-Pardo, D.; Cossy, J. J. Org. Chem. 2007, 72, 6556–6561.
(b) Lombardo, M.; Mosconi, E.; Pasi, F.; Petrini, M.; Trombini, C.
J. Org. Chem. 2007, 72, 1834–183. (c) Menche, D.; Arikan, F.; Li, J.;
Rudolph, S. Org. Lett. 2007, 9, 267–270. (d) Fustero, S.; Albert, L.;
The application of this reaction to the synthesis of chiral
nitrogen heterocycles is shown in Scheme 3. Thus, the
scissionꢀallylation reaction gave the allyl derivatives
~
Acena, J. L.; Sanz-Cervera, J. F.; Asensio, A. Org. Lett. 2008, 10, 605–
~
ꢀ
608. (e) Ona-Burgos, P.; Fernandez, I.; Iglesias, M. J.; Garcıa-Granda,
´
ꢀ
S.; Lopez-Ortiz, F. Org. Lett. 2008, 10, 537–540. (f) Tellam, J. P.;
€
Kociok-Kohn, G.; Carbery, D. R. Org. Lett. 2008, 10, 5199–5202. (g)
Davis, F. A.; Gaspari, P. M.; Nolt, B. M.; Xu, P. J. Org. Chem. 2008, 73,
9619–9626. (h) Wang, B.; Wang, Y.-J. Org. Lett. 2009, 11, 3410–3413. (i)
Jha, V.; Kondekar, N. B.; Kumar, P. Org. Lett. 2010, 12, 2762–2765. (j)
Qian, Y.; Xu, X.; Jiang, L.; Prajapati, D.; Hu, W. J. Org. Chem. 2010, 75,
7483–7486. (k) Pizzirani, D.; Kaya, T.; Clemons, P. A.; Schreiber, S. L.
Org. Lett. 2010, 12, 2822–2825.
Scheme 3
(8) Although substrate 2a can be prepared from glycine enolates, it
was prepared from commercial L-threonine, following standard proce-
dures: Zietlow, A.; Steckhan, E. J. Org. Chem. 1994, 59, 5658–5661.
(9) (a) The decarboxylation of amino acids can also be induced
electrochemically: Renaud, P.; Seebach, D. Angew. Chem., Int. Ed. Engl.
1986, 25, 843–844. (b) Seebach, D.; Charczuk, R.; Gerber, C.; Renaud,
P.; Berner, H.; Schneider, H. Helv. Chim. Acta 1989, 72, 401–425. (c)
Herborn, C.; Zietlow, A.; Steckhan, E. Angew. Chem., Int. Ed. Engl.
1989, 28, 1399–1401. (d) Matsumura, Y.; Shirakawa, Y.; Satoh, Y.;
Umino, M.; Tanaka, T.; Maki, T.; Onomura, O. Org. Lett. 2000, 2,
1689–1691. (e) For reviews on the subject, see: Utley, J. Chem. Soc. Rev.
1997, 26, 157–167. (f) Moeller, K. D. Tetrahedron 2000, 56, 9527–9554.
(10) (a) For the addition of nucleophiles to iminium ions, see: Yazici,
A.; Pyne, S. G. Synthesis 2009, 339–368 (part I). (b) Yazici, A.; Pyne,
S. G. Synthesis 2009, 513–541 (part 2). (c) Ferraris, D. Tetrahedron 2007,
63, 9581–9597. (d) Friestad, G. K.; Mathies, A. K. Tetrahedron 2007, 63,
2541–2569. (e) Schaus, S. E.; Ting, A. Eur. J. Org. Chem. 2007, 5797–
5815. (f) Petrini, M.; Torregiani, E. Synthesis 2007, 159–186. (g) Petrini,
M. Chem. Rev. 2005, 105, 3949–3977. (h) Royer, J.; Bonin, M.; Micouin,
L. Chem. Rev. 2004, 104, 2311–2352. (i) Maryanoff, B. E.; Zhang, H. C.;
Cohen, J. H.; Turchi, I. J.; Maryanoff, C. A. Chem. Rev. 2004, 104, 1431–
1628.
Org. Lett., Vol. 13, No. 13, 2011
3427