3
Table 2. PIM kinase inhibition via modified diamine analogs.
Table 3. Cell proliferation assay data for compound 22.
Cell Line
DU145
IC50 (uM)
Cancer
Prostate
3.7
5.9
6.4
6.9
5.6
LNCaP
Prostate
K562
Leukemia
Myeloma
Myeloma
RPMI-8226
NCI-H929
In conclusion, we have identified a novel class of (Z)-5-((2-
aminopyrimidin-4-yl)methylene)thiazolidine-2,4-diones as potent
and selective inhibitors of the PIM family of kinases. The PIM
kinases have been implicated as critical to cancer cell survival
and proliferation confirming them as attractive biological targets
for pharmaceutical drug development. This report demonstrates
the ability to optimize initially identified active molecules within
this series to provide lead structures with enhanced PIM kinase
inhibition and other pharmaceutical properties.
Selected
compounds such as 22 have exhibited a high degree of selectivity
for inhibition of the PIM kinases with the ability to inhibit cancer
cell proliferation in both hematologic malignancies and solid
tumors. A comprehensive description of the lead optimization
effort to afford a targeted drug candidate for the treatment of
cancer will be disclosed in due course.
A focused set of diamine analogs were designed and
synthesized to address the need to improve both permeability and
PIM kinase inhibition (Table 2). A newly developed and general
reductive amination procedure10 was utilized to provide all of the
analogs 18-22, which introduce a heteroaromatic group but
maintain the basic nature of the NH. These analogs all have both
enhanced permeability and increased PIM inhibition. The best
compound 22 was determined to have a Ki of 7.7 nM against
PIM1. Compound 22 also demonstrated a clear selectivity
profile across a panel of 150 oncology relevant kinases11 (Figure
4) when screened at 0.5 uM.
References and notes
1. Asano, J,; Nakano, A.; Oda, A.; Amou, H.; Hiasa, M.; Takeuchi,
K.; Miki, H.; Nakamura, S.; Harada, T.; Fujii, S.; Kagawa, K.;
Endo, I.; Yata, K.; Sakai, A.; Ozaki, S.; Matsumoto, T.; and
Abe, M. Leukemia, 2011, 25(7), 1182. Ebens, A. Jr.; and Wang,
X. 4-Substituted Pyridin-3-yl-carboxamide compounds and
methods of use, International Patent Application
WO2011/0059961A1. Brault, L.; Gasser, C.; Bracher, F.; Huber,
K.; Knapp, S.; and Schwaller, J. Heamatologica, 2010, 95(6),
1004.
2. Nawijn, M. C.; Alendar, A.; and Berns, A. Nature Reviews
Cancer, 2010 11, 23. Chen, W. W.; Chan, D. C.; Donald, C.;
Lilly, M. B.; and Kraft, A. S. Mol. Cancer Res., 2005, 3(8), 443.
Adam, M.; Pogacic, V.; Bendit, M.; Chappuis, R.; Nawijn, M. C.;
Duyster, J.; Fox, C. J.; Thompson, C. B.; Cools, J.; and Schwaller,
J. Cancer Res., 2006, 66(7), 3828.
Figure 4. Kinase selectivity panel for compound 22.
n 93-100% inhibition
n 50-70% inhibition
n <50% inhibition
3. Keeton, E. K.; McEachem, K.; Dillman, K. S.; Palakurthi, S.; Cao,
Y.; Grondine, M. R.; Kaur, S.; Wang, S.; Chen, Y.; Wu, A.; Shen.
M.; Gibbons, F. D.; Lamb, L. M.; Zheng, X.; Stone, R. M.;
DeAngelo, D. J.; Platanias, L. C.; Dakin, L. A.; Chen, H.; Lyme,
P. D.; and Huszar, D. Blood, 2014, 123(6), 905. Lee, J.; Park, J.;
and Hong, V. S. Chem. Pharm. Bull. 2014, 62(9), 906. Mondello,
P.; Cuzzocea, S.; and Miam, M. J. of Hematology & Oncology
2014, 7, 95.
4. Lu, J.; Zavorotinskaya, T.; Dai, Y.; Niu, X. H.; Castillo, J.; Sim,
J.; Yu, J.; Wang, Y.; Langowski, J. L.; Holash, J.; Shannon, K.;
and Garcia, P. D. Blood, 2013, 122(9), 1610.
5.
Beharry, Z.; Zemskova, M.; Mahajan, S.; Zhang, F.; Ma, J.; Xia,
Z.; Lilly, M.; Smith, C. D.; and Kraft, A. S. Molecular Cancer
Therapeutics, 2009, 8(6), 1473.
Pim-1, Pim-2, &
Pim-3
6. Saylea, K.L.; Bentley, J.; Boyle, F. T.; Calvert, A. H.; Cheng, Y.;
Curtin, N. J.; Endicott, J. A.; Golding, B. T.; Hardcastle, I. R.;
Jewsbury, P.; Mesguiche, V.; Newell, D. R.; Noble, M. E. M.;
Parsons, R. J.; Pratt, D. J.; Wang, L. Z.; and Griffin, R. J. BioOrg.
Med. Chem. Lett. 2003, 13(18), 3079. Binch, H.; Mortimore, M.;
Fraysse, D.; Davis, C.; O'Donnell, M.; Everitt, S,; Robinson, D.;
Pinder, J.; Miller, A. Aminopyrimidines useful as kinase
In addition, 22 also exhibited potent IC50’s against a number of
cancer cell lines in prostate, leukemia, and multiple myeloma
(Table 3). An in vivo rat PK study, dosing the animals both i. v.
and orally with 5 mg/kg of compound 22, demonstrated a plasma
half-life (T1/2) of 3.1 h with very good oral bioavailability (F =
49.9%).
inhibitors, United States Patent US 11/592,119.
7. Garrick, L. M.; Hauze, D. B.; Kees, K. I.; Lundquist, J. T.; Mann,
C. W.; Mehlmann, J. F.; Pelletier, J. C.; Rogers, J. F.; and Wrobel,
J. F. Gonadotropin releasing hormone receptor antagonists,
International Patent Application WO2006/009734A1.