Organic Letters
Letter
Walls, M.; Wei, P.; Qian, F.; Zhang, X.; Zhang, Y.; Hepperle, M. E.; Li,
Z.; Campbell, D. A.; Betancourt, J. M. Bioorg. Med. Chem. Lett. 2009,
19, 5708−5711.
(2) Matteson, D. S.; Sadhu, K. M.; Leinhard, G. E. J. Am. Chem. Soc.
1981, 103, 5241−5242.
Houk, K. N.; Nicholas, K. M. Organometallics 2010, 29, 3404−3412.
(c) Lin, X.; Xi, Y.; Sun, J. Comput. Theor. Chem. 2012, 999, 74−82.
(d) Lin, X.; Sun, J.; Xi, Y.; Pang, B. Comput. Theor. Chem. 2011, 963,
284−289. (e) Guo, Z.; Guan, X.; Huang, J.-S.; Tsui, W.-M.; Lin, Z.;
Che, C.-M. Chem. - Eur. J. 2013, 19, 11320−11331.
(20) α-Oxidation of α-MIDA boryl radicals: (a) He, Z.; Trinchera, P.;
Adachi, S.; St. Denis, J. D.; Yudin, A. K. Angew. Chem., Int. Ed. 2012,
51, 11092−11096. Photoredox α-alkylation of boryl enamines:
(b) Trinchera, P.; Corless, V. B. Angew. Chem., Int. Ed. 2015, 54,
9038−9041.
(21) Zard and co-workers have reported that MIDA boronates do
not stabilize adjacent radicals due to the lack of a vacant p-orbital.
Quiclet-Sire, B.; Zard, S. Z. J. Am. Chem. Soc. 2015, 137, 6762−6765.
(22) (a) Roizen, J. L.; Zalatan, D. N.; Du Bois, J. Angew. Chem., Int.
(3) (a) Groll, M.; Berkers, C.; Ploegh, H.; Ovaa, H. Structure 2006,
14, 451−456. (b) Adams, J.; Behnke, M.; Chen, S.; Cruickshank, A. A.;
Dick, L. R.; Greiner, L.; Klunder, J. M.; Ma, Y.-T.; Plamondon, L.;
Stein, R. L. Bioorg. Med. Chem. Lett. 1998, 8, 333−338.
(4) (a) Baker, S. J.; Tomsho, J. W.; Benkovic, S. J. Chem. Soc. Rev.
2011, 40, 4279−4285. (b) Touchet, S.; Carreaux, F.; Carboni, B.;
Bouillon, A.; Boucher, J.-L. Chem. Soc. Rev. 2011, 40, 3895−3914.
(c) Dembitsky, V.; Srebnik, M. Tetrahedron 2003, 59, 579−593.
(d) Smoum, R.; Rubenstein, A.; Dembitsky, V. M.; Srebnik, M. Chem.
Rev. 2012, 112, 4156−4220.
Ed. 2013, 52, 11343−11346. (b) Norder, A.; Warren, S. A.;
̈
Herdtweck, E.; Huber, S. M.; Bach, T. J. Am. Chem. Soc. 2012, 134,
13524−13531.
(5) Bonvini, P.; Zorzi, E.; Basso, G.; Rosolen, A. Leukemia 2007, 21,
838−842.
(23) Harvey, M. E.; Musaev, D. G.; Du Bois, J. J. Am. Chem. Soc.
2011, 133, 17207−17216.
(6) Narra, K.; Mullins, S. R.; Lee, H. O.; Strzemkowski-Brun, B.;
Magalong, K.; Christiansen, V. J.; McKee, P. A.; Egleston, B.; Cohen,
S. J.; Weiner, L. M.; Meropol, N. J.; Cheng, J. D. Cancer Biol. Ther.
2007, 6, 1691−1699.
(7) (a) Matteson, D. S.; Sadhu, K. M.; Leinhard, G. E. J. Am. Chem.
Soc. 1981, 103, 5241−5242. (b) Batsanov, A. S.; Grosjean, C.; Schulz,
T.; Whiting, A. J. Org. Chem. 2007, 72, 6276−6279. (c) Matteson, D.
S. J. Org. Chem. 2013, 78, 10009−10023. (d) Georgiou, I.; Ilyashenko,
G.; Whiting, A. Acc. Chem. Res. 2009, 42, 756−768.
(8) (a) Buesking, A. W.; Ellman, J. A. Chem. Sci. 2014, 5, 1983−1987.
(b) Hu, N.; Zhao, G.; Zhang, Y.; Liu, X.; Li, G.; Tang, W. J. Am. Chem.
Soc. 2015, 137, 6746−6749. (c) Beenen, M. A.; An, C.; Ellman, J. A. J.
Am. Chem. Soc. 2008, 130, 6910−6911. (d) Chen, J.; Chen, L.-y.;
Zheng, Y.; Sun, Z. RSC Adv. 2014, 4, 21131−21133. (e) Hong, K.;
Morken, J. P. J. Am. Chem. Soc. 2013, 135, 9252−9254.
(9) (a) He, Z.; Zajdlik, A.; St. Denis, J. D.; Assem, N.; Yudin, A. K. J.
Am. Chem. Soc. 2012, 134, 9926−9929. (b) Zajdlik, A.; He, Z.; St.
Denis, J. D.; Yudin, A. K. Synthesis 2014, 46, 445−454.
(10) (a) He, Z.; Yudin, A. K. J. Am. Chem. Soc. 2011, 133, 13770−
13773. (b) Li, J.; Burke, M. D. J. Am. Chem. Soc. 2011, 133, 13774−
13777.
(24) This process may proceed via a concerted mechanism:
(a) Davies, H. M. L.; Dick, A. R. Top. Curr. Chem. 2009, 292, 303−
345. Or a rebound mechanism: (b) Nageli, I.; Bernardinelli, G.;
̈
Jacquier, Y.; Moran, M.; Muller, P. Helv. Chim. Acta 1997, 80, 1087−
̈
1105. (c) Au, S.-M.; Huang, J.-S.; Yu, W.-Y.; Fung, W.-H.; Che, C.-M.
J. Am. Chem. Soc. 1999, 121, 9120−9132.
(25) Stabilization of α-cations by electron-rich substituents: van
Alem, K.; Lodder, G.; Zuilof, H. J. Phys. Chem. A 2002, 106, 10681−
10690.
(26) β-Silyl cation stabilization: (a) Wierschke, S. G.; Chandrasekhar,
J.; Jorgensen, W. L. J. Am. Chem. Soc. 1985, 107, 1496−1500.
(b) Creary, X.; Kochly, E. D. J. Org. Chem. 2009, 74, 2134−2144.
(27) Wyszynski, F. J.; Thompson, A. L.; Davis, B. G. Org. Biomol.
Chem. 2010, 8, 4246−4248.
(28) Transition-metal-catalyzed 1,2-boryl migration of alkynyl epoxy
MIDA boronates affords borylated furans with high regioselectivity:
Shiroodi, R. K.; Koleda, O.; Gevorgyan, V. J. Am. Chem. Soc. 2014,
136, 13146−13149.
(11) (a) Matteson, D. S.; Liedtke, J. D. J. Org. Chem. 1963, 28, 1924−
1926. (b) Moore, C. M.; Medina, C. R.; Cannamela, P. C.; McIntosh,
M. L.; Ferber, C. J.; Roering, A. J.; Clark, T. B. Org. Lett. 2014, 16,
6056−6059.
(12) Espino, C.; Wehn, P.; Chow, J.; Du Bois, J. J. Am. Chem. Soc.
2001, 123, 6935−6936.
ization.
(14) Espino, C. G.; Fiori, K. W.; Kim, M.; Du Bois, J. J. Am. Chem.
Soc. 2004, 126, 15378−15379.
(15) In previous studies (ref 10a), we have found that the p-
methoxyphenyl oxiranyl MIDA boronate is an unstable species. This
has limited our efforts to explore electron-rich aryl substituents in C−
H amination chemistry.
(16) Reports of MIDA boronate stability in the presence of transition
metals: (a) St. Denis, J. D.; He, Z.; Yudin, A. K. Org. Biomol. Chem.
2012, 10, 7900−7902. (b) St. Denis, J. D.; Zajdlik, A.; Tan, J.;
Trinchera, P.; Lee, C. F.; He, Z.; Adachi, S.; Yudin, A. K. J. Am. Chem.
Soc. 2014, 136, 17669−17673. (c) Gillis, E. P.; Burke, M. D. J. Am.
Chem. Soc. 2008, 130, 14084−14085.
(17) Six-membered rings are favored with sulfamate esters:
(a) Espino, C. G.; Wehn, P. M.; Chow, J.; Du Bois, J. J. Am. Chem.
Soc. 2001, 123, 6935−6936. (b) Wehn, P. M.; Lee, J.; Du Bois, J. Org.
Lett. 2003, 5, 4823−4826. (c) Wehn, P. M.; Du Bois, J. J. Am. Chem.
Soc. 2002, 124, 12950−12951.
(18) Zare and co-workers observed two dirhodium species that differ
in oxidation state. Perry, R. H.; Cahill, T. J.; Roizen, J. L.; Du Bois, J.;
Zare, R. N. Proc. Natl. Acad. Sci. U. S. A. 2012, 109, 18295−18299.
(19) Some computational models propose a barrier-free C−N bond
formation: (a) Lin, X.; Zhao, C.; Che, C.-M.; Ke, Z.; Phillips, D. L.
Chem. - Asian J. 2007, 2, 1101−1108. (b) Barman, D. N.; Liu, P.;
D
Org. Lett. XXXX, XXX, XXX−XXX