Crystal Growth & Design
ARTICLE
’ CONCLUSION
(9) Peddy, V.; McMahon, J. A.; Bis, J. A.; Zaworotko, M. J. J. Pharm.
Sci. 2006, 95, 499–516.
It is clear from all the structures that the weak forces play a
major role once the stronger hydrogen bonds have been utilized
and consumed. With the exception of 14 and 15, all the compounds
possess stacking interactions. The majority of the compounds
showed πÀπ stacking between the pyrimidineÀpyrimidine
moieties and acidÀpyrimidine rather than acidÀacid moieties.
In fact no stacking has been observed between acidÀacid molecules
in any of the cases as they lie far beyond the limits. Among the
CÀH O interactions in all the compounds, C5ÀH5 O(X)
(10) Desiraju, G. R. Angew. Chem. 1995, 34, 2311–2327.
(11) Stahl, P. H.; Nakano, M. Pharmaceutical Aspects of the Drug
Salt Form. In Handbook of Pharmaceutical Salts: Properties, Selection, and
Use; Stahl, P. H., Wermuth, C. G., Eds.; Wiley-VCH: New York, 2002.
(12) Almarsson, O.; Zaworotko, M. J. Chem. Commun. 2004, 1889–
1896.
(13) Blagden, N.; Berry, D. J.; Parkin, A.; Javed, H.; Ibrahim, A.;
Gavan, P. T.; De matos, L.; Seaton, C. C. New J. Chem. 2008, 32, 1659–
1672.
(14) Aakeroy, C. B.; Fasulo, M. E.; Desper, J. Mol. Pharmaceutics
2007, 4, 317–322.
(15) Issa, N.; Karamertzanis, P. G.; Welch, G. W. A.; Price, S. L.
Cryst. Growth Des. 2009, 9, 442–453.
(16) Shattock, R.; Arora, K. K.; Vishweshwar, P.; Zaworotko, M. J.
Cryst. Growth Des. 2008, 8, 4533–4545.
(17) Chadwick, K.; Sadiq, G.; Davey, R. J.; Seaton, C. C.; Pritchard,
R. G.; Parkin, A. Cryst. Growth Des. 2009, 9, 1278–1279.
(18) Horst, J. H. T.; Deij, M. A.; Cains, P. W. Cryst. Growth Des.
2009, 9, 1531–1537.
3 3 3
3 3 3
was found to be present in majority of the cases. This suggests
that the CÀH bond is acidic in nature which readily contributes
as a donor once the strong hydrogen bonds are quenched. The
present results show good success in the harvest of isostructural
compounds. There have been several cases in which isostructur-
ality is exhibited despite the absence of chloro/methyl exchange,
and these are accounted for on the basis of the formation of the
reliable heterotetrameric synthon. As established by Fabian and
Kalman,37 Iv > 70% seems to have good structural similarities and
50% > Iv < 70% indicates pronounced resemblance, and Iv < 30%
has no great significance in the structural similarity. It is
concluded from the present study that supramolecular synthons
can be used as a strategy for systematic construction of isostruc-
tural solids with appreciable knowledge of the hierarchy of the
hydrogen bonds. Since the present work also demonstrates the
same, with the understanding of this phenomenon, one will be
able to exploit them by engineering materials of the desired
property from preselected molecular precursors both in the field
of medicinal chemistry and material science.
(19) Childs, S. L.; Stahly, G. P.; Park, A. Mol. Pharmaceutics 2007,
4, 323–338.
(20) Childs, S. L.; Zaworotko, M. J. Cryst. Growth Des. 2009, 9,
4208–4211.
(21) Kꢀalmꢀan, A.; Pꢀarkꢀanyi, L; Aragay, G. Acta Crystallogr. 1993,
B49, 1039–1049.
(22) Cinꢁciꢀc, D.; Friꢁsꢁciꢀc, T. New J. Chem. 2008, 32, 1776–1781.
(23) Cinꢁciꢀc, D.; Friꢁsꢁciꢀc, T.; Jones, W. Chem.—Eur. J. 2008, 14, 747–
753.
(24) Cinꢁciꢀc, D.; Friꢁsꢁciꢀc, T.; Jones, W. Chem. Mater. 2008, 20, 6623–
6626.
(25) Capacci-Daniel, C.; Dehghan, S.; Wurster, V. M.; Basile, J. A.;
Hiremath, R.; Sarjeant, A. A.; Swift, J. A. CrystEngComm 2008, 10,
1875–880.
’ ASSOCIATED CONTENT
(26) Grineva, O. V.; Zorkii, P. M. J. Struct. Chem. 2001, 42, 16–23.
(27) Saha, B. K.; Nangia, A. Heteroat. Chem. 2007, 18, 185–194.
(28) Ray, A.; Maiti, D.; Sheldrick, W. S.; Figge, H. M.; Mondal, S.;
Mukherjee, M.; Gao, S.; Ali, M. Inorg. Chim. Acta 2005, 358, 3471–3477.
(29) Hosokawa, T.; Datta, S.; Sheth, A. R.; Brooks, N. R.; Young,
V. G.; Grant, D. J. W. Cryst. Growth Des. 2004, 4, 1195–1201.
(30) Barnett, S. A.; Tocher, D. A.; Vickers, M. CrystEngComm 2006,
8, 313–319.
S
Supporting Information. Crystallographic information
b
files (CIF) of structures 1À17 and other information are
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: tommtrichy@yahoo.co.in. Phone: ++91-431-2407053.
Fax: ++91-431-2407045, 2407030.
(31) Nath, N. K.; Saha, B. K.; Nangia, A. New J. Chem. 2008, 32,
1693–1701.
(32) Manoj, K.; Gonnade, R. G.; Bhadbhade, M. M.; Shashidhar,
M. S. CrystEngComm 2009, 11, 1022–1029.
(33) Dechambenoit, P.; Ferlay, S.; Kyritsakas, N.; Hosseini, M. W.
Chem. Commun. 2009, 1559–1561.
(34) Abbas, G.; Lan, Y.; Kostakis, G. E.; Wernsdorfer, W.; Anson,
C. E.; Powell, A. K. Inorg. Chem. 2010, 49 (17), 8067–8072.
(35) Piecek, W.; Glab, K. L.; Januszko, A.; Perkowski, P.; Kaszynski,
P. J. Mater. Chem. 2009, 19, 1173–1182.
(36) Rutherford, J. S. Acta Chim. Hung. 1997, 134, 395–405.
(37) Fabian, L.; Kalman, A. Acta Crystallogr. 1999, B55, 1099–1108.
(38) Parkin, A.; Barr, G.; Dong, W.; Gilmore, C. J.; Jayatilaka, D.
CrystEngComm 2007, 9, 648–652.
’ ACKNOWLEDGMENT
The authors thank the DST - India (FIST programme) for the
use of the Bruker diffractometer at the School of Chemistry,
Bharathidasan University (for crystals 1À4, 6À10, 12, and15À17),
and also the Department of Chemistry, Howard University, for data
collection of crystals 5, 11, 13, and 14. Dr. L. Fabian (Pfizer Institute
for Pharmaceutical Materials Science, Cambridge, U.K.) is thanked
for his assistance in the isostructurality calculation.
(39) Edwards, M. R.; Jones, W.; Motherwell, W. D. S.; Shields, G. P.
Mol. Cryst. Liq. Cryst. 2001, 356, 337–353.
’ REFERENCES
(40) Baker, B. R.; Santi, D. V. J. Pharm. Sci. 1965, 54, 1252–1257.
(41) Hunt, W. E.; Schwalbe, C. H.; Bird, K.; Mallison, P. D. Biochem.
J. 1980, 187, 533–536.
(1) Thakur, T. S.; Desiraju, G. R. Cryst. Growth Des. 2008, 8, 4031–4044.
(2) Desiraju, G. R. Crystal Engineering: the Design of Organic Solids;
Elsevier: Amsterdam, 1989.
(42) Balasubramani, K.; Muthiah, P. T.; RajaRam, R. K.; Sridhar, B.
Acta Crystallogr. 2005, E61, o4203–o4205.
(43) Balasubramani, K.; Muthiah, P. T.; Lynch, D. E. Acta Crystal-
logr. 2006, E62, o2907–o2909.
(44) Devi, P.; Muthiah, P. T. Acta Crystallogr. 2007, E63, o4822–
o4823.
(3) Steiner, T. Angew. Chem., Int. Ed. 2002, 41, 48–76.
(4) Pollino, J. M.; Weck, M. Chem. Soc. Rev. 2005, 34, 193–207.
(5) Fyfe, M. C. T.; Stoddart, J. F. Acc. Chem. Res. 1997, 30, 393–401.
(6) Seidel, S. R.; Stang, P. J. Acc. Chem. Res. 2002, 35, 972–983.
(7) Desiraju, G. R. Angew. Chem., Int. Ed. 2007, 46, 8342–8356.
(8) Sarma, J. A. R. P.; Desiraju, G. R. Acc. Chem. Res. 1986, 19, 222–228.
3591
dx.doi.org/10.1021/cg200539a |Cryst. Growth Des. 2011, 11, 3579–3592