In conclusion, we developed new methods for the syntheses
of highly organic-soluble IMWs with PMCD lines in the same
direction by carrying out click polymerization of linked
[2]rotaxane monomers. The obtained IMWs had high solubility
in organic solvents and a high covering ratio, rigidity, and
photoluminescence efficiency. Experiments are currently being
performed to evaluate the behaviour of the new material in
molecular electronics.29
Notes and references
1 A. Qin, J. W. Y. Lam and B. Z. Tang, Chem. Soc. Rev., 2010, 39,
2522–2544.
2 W. H. Binder and R. Sachsenhofer, Macromol. Rapid Commun.,
2007, 28, 15–54.
3 D. J. V. C. Van Steenis, O. R. P. David, G. P. F. van Strijdonck,
J. H. van Maarseveen and J. N. H. Reek, Chem. Commun., 2005,
4333–4335.
Fig. 3 Photoluminescence spectra of 3 before and after protonation.
solid state by simultaneously carrying out in situ flash photolysis
time-resolved microwave conductivity (TRMC) and transient
absorption spectroscopy (TAS) measurements.25-27 The solid
films of 3 show clear conductivity transients upon pulse
exposure with slow recombination processes (Fig. S3a and b,
ESIz), which is in contrast to the rapid recombination of
charge carriers within the time constant of TRMC measurement
(B20 ns) for solid films of 30. TAS of an identical film resulted
in simultaneous bleaching and absorption with an isosbestic
point (Fig. S3c, ESIz), and the absorption maximum shifted
slightly toward the longer region (lmax = 620 nm) with a
smaller extinction coefficient (e+ = 1 ꢀ 105 cmꢁ1 molꢁ1 dm3)
than those observed for radical cations of poly(phenylene
ethynylene) (PPE) core molecules.14 On the basis of the optical
parameters and transient conductivity,14,25 the values of
anisotropic hole mobility in the backbones of 3 and 30 were
4 S. Bakbak, P. J. Leech, B. E. Carson, S. Saxena, W. P. King and
U. H. F. Bunz, Macromolecules, 2005, 39, 6793–6795.
5 M. A. Karim, Y. R. Cho, J. S. Park, S. C. Kim, H. J. Kim, J. W. Lee,
Y. S. Gal and S. H. Jin, Chem. Commun., 2008, 1929–1931.
6 M. A. Karim, Y. R. Cho, J. S. Park, T. I. Ryu, M. J. Lee, M. Song,
S. H. Jin, M. J. Lee and Y. S. Gal, Macromol. Chem. Phys., 2008,
209, 1967–1975.
7 T. Ooya, D. Inoue, H. S. Choi, Y. Kobayashi, S. Loethen,
D. H. Thompson, Y. H. Ko, K. Kim and N. Yui, Org. Lett.,
2006, 8, 3159–3162.
8 Recently we have developed a molecular interconnecting method
between nanoelectrodes by using an insulated molecular wire, see:
M. Taniguchi, Y. Nojima, K. Yokota, J. Terao, K. Sato, N. Kambe
and T. Kawai, J. Am. Chem. Soc., 2006, 128, 15062–15063.
9 G. Wenz, B.-H. Han and A. Muller, Chem. Rev., 2006, 106,
782–817.
10 M. J. Frampton and H. L. Anderson, Angew. Chem., Int. Ed.,
2007, 46, 1028–1064.
11 G. Wenz, Inclusion Polymers, Springer, Verlag, 1989.
12 A. Harada, A. Hashidzume, H. Yamaguchi and Y. Takashima,
Chem. Rev., 2009, 109, 5974–6023.
estimated to be 7 ꢀ 10ꢁ3 and 4 ꢀ 10ꢁ3 cm2 Vꢁ1 sꢁ1
,
respectively. Although these values of intramolecular mobility
are lower than those of previously synthesized IMWs having a
PPE core, in general, these are very high in p-conjugated
polymers and comparable to those of polythiophenes.26 The
major difference in the transient conductivity over one order of
magnitude is due to photo-carrier generation (f = 4 ꢀ 10ꢁ3
and 9 ꢀ 10ꢁ4 for 3 and 30, respectively), which is highly
dependent on the presence of the insulating PMCD clads.
In contrast to optical properties of the p-conjugated core
of IMW without azide moieties,14 the smaller oscillator
strength of the transient absorption of radical cations suggests
localization of holes on the conjugated segments divided by
azide moieties; this results in equivalent values of the short
range hole mobilities in 3 and 30, as probed by TRMC
measurement.
13 J. Terao, S. Tsuda, Y. Tanaka, K. Okoshi, T. Fujihara, Y. Tsuji
and N. Kambe, J. Am. Chem. Soc., 2009, 131, 16604–16605.
14 J. Terao, Y. Tanaka, S. Tsuda, N. Kambe, M. Taniguchi, T. Kawai,
A. Saeki and S. Seki, J. Am. Chem. Soc., 2009, 131, 18046–18047.
15 J. Terao, S. Tsuda, K. Tsurui and N. Kambe, Macromol. Symp.,
2010, 297, 54–60.
16 J. Terao, K. Ikai, N. Kambe, S. Seki, A. Saeki, K. Ohkoshi,
T. Fujihara and Y. Tsuji, Chem. Commun., 2011, 47, 6816–6818.
17 S. Tsuda, J. Terao and N. Kambe, Chem. Lett., 2009, 76–77.
18 S. Tsuda, J. Terao, Y. Tanaka, T. Maekawa and N. Kambe,
Tetrahedron Lett., 2009, 50, 1146–1150.
19 J. Terao, A. Wadahama, T. Fujihara and Y. Tsuji, Chem. Lett.,
2010, 518–519.
20 T. Kaneda, T. Fujimoto, J. Goto, K. Asano, Y. Yasufuku,
J. H. Jung, C. Hosono and Y. Sakata, Chem. Lett., 2002, 514–515.
21 T. Fujimoto, Y. Sakata and T. Kaneda, Chem. Commun., 2000,
2143–2145.
22 A. Yerin, E. S. Wilks, G. P. Moss and A. Harada, Pure Appl.
Chem., 2008, 80, 2041–2068.
The CH3OH solution of 3 emitted blue light and its photo-
luminescence (PL) peaks were red-shifted upon the addition of
trifluoroacetic acid (TFA), indicating an acidichromic effect.28
The PL spectra of 3 before and after protonation are shown in
Fig. 3. Emissions of 3 in CH3OH are narrow and structured
owing to its well-defined excited state. The protonation of its
triazole rings at the 3-position by TFA bathochromically shifts
its emission to 455 nm and broadens its PL spectrum owing to
the acid-caused perturbation of its excited state. Because of
this unique phenomenon, IMWs of 3 are potentially applicable
as monomolecular electronic materials to enable conductivity
switch by acidity.
23 V. V. Rostovtsev, L. G. Green, V. V. Fokin and K. B. Sharpless,
Angew. Chem., Int. Ed., 2002, 41, 2596–2599.
24 C. W. Tornøe, C. Christensen and M. Meldal, J. Org. Chem., 2002,
67, 3057–3064.
25 A. Acharya, S. Seki, A. Saeki, Y. Koizumi and S. Tagawa, Chem.
Phys. Lett., 2005, 404, 356–360.
26 F. C. Grozema, L. D. A. Siebbeles, J. M. Warman, S. Seki,
S. Tagawa and U. Scherf, Adv. Mater., 2002, 14, 228–231.
27 A. Saeki, S.-i. Ohsaki, S. Seki and S. Tagawa, J. Phys. Chem. C,
2008, 112, 16643–16650.
28 S. Bakbak, P. J. Leech, B. E. Carson, S. Saxena, W. P. King and
U. H. F. Bunz, Macromolecules, 2006, 39, 6793–6795.
29 X. Chen, A. B. Braunschweig, M. J. Wiester, S. Yeganeh,
M. A. Ratner and C. A. Mirkin, Angew. Chem., Int. Ed., 2009,
48, 5178–5181.
c
This journal is The Royal Society of Chemistry 2012
Chem. Commun., 2012, 48, 1577–1579 1579