Journal of the American Chemical Society
ARTICLE
(d, J = 8.7 Hz, 2H), 7.54-7.63 (m, 14H), 8.66 (d, J = 6.4 Hz, 6H); 13
C
voltammogram of 3Py-Ph4T. Complete ref 1. This material is
NMR (CDCl3) δ 14.1, 22.6, 29.2, 29.3, 29.3, 29.6, 30.4, 30.5, 31.7, 31.7,
64.6, 83.3, 93.6, 120.8, 121.1, 123.9, 124.1, 125.5, 126.2, 126.3, 126.5,
126.9, 127.6, 128.9, 129.8, 130.9, 130.9, 131.6, 132.5, 133.9, 134.2, 135.1,
135.6, 136.0, 136.3, 137.3, 139.7, 40.8, 142.1, 142.6, 146.9, 147.4, 150.0;
MS (MALDI-TOF, 1,8,9-trihydroxyanthracene matrix) m/z 1147.84
(Mþ, calcd 1147.41); Anal. Calcd for C76H65N3S4: C, 79.47; H, 5.70; N,
3.66; Found: C, 79.31; H, 5.61; N, 3.43.
’ AUTHOR INFORMATION
Corresponding Author
hs-nakamura@aist.go.jp; kiguti@chem.titech.ac.jp; aso@sanken.
osaka-u.ac.jp
Synthesis of 3Py-PE-3Py. 3Py-TIPS (83 mg, 0.11 mmol) was
placed in a 100 mL round-bottomed flask and dissolved with THF
(20 mL). To the mixture was added nBu4NF (1.0 M THF solution,
0.22 mL, 0.23 mmol), and the mixture was stirred at room temperature
for 30 min. The reaction was quenched by addition of satd NaHCO3 aq,
and the organic layer was separated. The aqueous layer was extracted
with hexane, and the combined organic layer was washed with brine and
dried over Na2SO4. After removal of the solvent under reduced pressure,
the residue was used for the next reaction without further purification.
The residue, 2 (116 mg, 0.17 mmol), Pd(PPh3)4 (13 mg, 0.011
mmol), and CuI (2 mg, 0.011 mmol) were placed in a 30 mL round-
bottom flask and dissolved with THF (6 mL) and iPr2NEt (2 mL). The
reaction mixture was stirred at room temperature for 12 h. After removal
of the solvent under reduced pressure, the residue was purified by
column chromatography on silica gel (EtOAc/MeOH/Et3N = 18/1/1)
to give compound A (75 mg, 58% (two steps)). White solid; mp 132-
134 ꢀC; 1H NMR (CDCl3) δ 7.03 (d, J = 8.8 Hz, 6H), 7.12 (d, J = 8.3 Hz,
2H), 7.30 (d, J = 8.3 Hz, 2H), 7.37-7.45 (m, 14H), 7.48 (d, J = 8.8 Hz,
2H), 7.51 (d, J = 6.1 Hz, 6H), 7.61 (d, J = 8.8 Hz, 6H), 8.66 (d, J = 6.1 Hz,
6H); MS (MALDI-TOF, 1,8,9-trihydroxyanthracene matrix) m/z
1127.98 (Mþ, calcd 1127.11).
’ ACKNOWLEDGMENT
The authors are grateful to T. Ohto (the University of Tokyo)
for helpful discussions and support through calculations. This
work was supported in part by Grants-in-Aids for Scientific
Research on Priority Areas, “Electron Transport Through a
Linked Molecule in Nano-Scale” (Grant No. 17069006) and
Management Expenses Grants for National Universities Cor-
porations from the Ministry of Education, Culture, Sports,
Science, and Technology, Japan. Thanks are extended to the
Elemental Analysis Section of the Comprehensive Analysis
Center (CAC) of the Institute of Scientific and Industrial
Research (ISIR), Osaka University, for assistance in obtaining
elemental analyses.
’ REFERENCES
(1) Adams, D. M.; et al. J. Phys. Chem. B 2003, 107, 6668.
(2) Melosh, N.; Boukai, A.; Diana, F.; Gerardot, B.; Badolato, A.;
Petroff, P.; Heath, J. R. Science 2003, 300, 112.
Compound A (55 mg, 0.049 mmol), 4-pyridineboronic acid (36 mg,
0.29 mmol), K2CO3 (54 mg, 0.39 mmol), and Pd(PPh3)4 (17 mg, 0.015
mmol) were placed in a test tube and dissolved with THF (5 mL) and
water (1 mL). The reaction mixture was stirred at 80 ꢀC for 12 h. The
reaction mixture was extracted with hexane and the organic layer was
washed with brine and dried over Na2SO4. After removal of the solvent
under reduced pressure, the residue was purified by column chromatog-
raphy on alumina (CHCl3/MeOH = 9/1) to give 3Py-PE-3Py (49 mg,
90%). White solid; mp >300 ꢀC; 1H NMR (CDCl3) δ 7.28 (d, J = 8.8 Hz,
4H), 7.41 (d, J = 8.5 Hz, 12H), 7.46-7.53 (m, 16H), 7.60 (d, J = 8.5 Hz,
12H), 8.66 (d, J = 6.4 Hz, 12H); MS (MALDI-TOF, 1,8,9-trihydroxyan-
thracene matrix) m/z 1123.78 (Mþ, calcd 1124.46). Anal. Calcd for
C82H56N6: C, 87.52; H, 5.02; N, 7.47; Found: C, 87.80; H, 5.07; N, 7.19.
Synthesis of 1Py-Ph4T. 4-Ethynylpyridine (4) (55 mg, 0.53 mmol),
Ph4T-I (308 mg, 0.44 mmol), PdCl2(PPh3)2 (31 mg, 0.044 mmol), and
CuI (8 mg, 0.042 mmol) were placed in a 50 mL round-bottom flask and
dissolved with THF (21 mL) and Et3N (7 mL). The reaction mixture
was stirred at room temperature for 12 h. After removal of the solvent
under reduced pressure, the residue was purified by column chroma-
tography on silica gel (hexane/EtOAc = 3/1) to give 1Py-Ph4T (59 mg,
20%). Black oil; 1H NMR (CDCl3) δ 0.90 (t, J = 7.1 Hz, 6H), 1.22-1.50
(m, 12H), 1.56-1.68 (m, 4H), 2.75-2.82 (m, 4H), 7.07 (d, J = 4.1 Hz,
1H), 7.15-7.17 (m, 3H), 7.19 (s, 1H), 7.27-7.33 (m, 1H), 7.34-7.41
(m, 4H), 7.60 (d, J = 7.4 Hz, 2H), 8.60 (d, J = 6.4 Hz, 2H); 13C NMR
(CDCl3) δ 14.1, 22.6, 22.6, 29.1, 29.3, 29.3, 29.6, 30.4, 30.5, 31.6, 31.7,
87.6, 91.4, 119.4, 123.9, 124.2, 125.0, 125.5, 126.1, 126.3, 127.2, 127.6,
128.9, 129.7, 131.1, 133.9, 133.9, 135.7, 136.2, 136.3, 137.7, 139.8, 140.8,
142.1, 149.7; MS (MALDI-TOF, 1,8,9-trihydroxyanthracene matrix)
m/z 675.97 (Mþ, calcd 675.21) ; Anal. Calcd for C41H41NS4: C, 72.84;
H, 6.11; N, 2.07; Found: C, 73.10; H, 6.08; N, 1.94.
(3) Novoselov, K.; Geim, A. K.; Morozov, S. V.; Jiang., D.; Katsnelson,
M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A. Nature2005, 438, 197.
(4) (a) Tao, N. J. Nat. Nanotechnol. 2006, 1, 173.(b) Cuevas, J. C.;
Scheer, E. Molecular Electronics: An Introduction to Theory and Experi-
ment; World Scientific: Singapore, 2010.
(5) Aviram, A.; Ratner, M. Chem. Phys. Lett. 1974, 29, 277.
(6) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M.
Science 1997, 278, 252.
(7) Xu, B.; Tao, N. J. Science 2003, 301, 1221.
(8) Chen, F.; Li, X.; Hihath, J.; Huang, Z.; Tao, N. J. Am. Chem. Soc.
2006, 128, 15874.
(9) (a) Patrone, L.; Palacin, S.; Bourgoin, J. P. Appl. Surf. Sci. 2003,
212-213, 446. (b) Patrone, L.; Palacin, S.; Charlier, J.; Armand, F.;
Bourgoin, J. P.; Tang, H.; Gauthier, S. Phys. Rev. Lett. 2003, 91, 096802/
1. (c) Yasuda, S.; Yoshida, S.; Sasaki, J.; Okutsu, Y.; Nakamura, T.;
Taninaka, A.; Takeuchi, O.; Shigekawa, H. J. Am. Chem. Soc. 2006, 128,
7746. (d) Yokota, K.; Taniguchi, M.; Kawai, T. J. Am. Chem. Soc. 2007,
129, 5818. (e) Yokota, K.; Taniguchi, M.; Tanaka, H.; Kawai, T. Phys.
Rev. B 2008, 77, 165416/1.
(10) Ie, Y.; Hirose, T.; Yao, A.; Yamada, T.; Takagi, N.; Kawai, M.;
Aso, Y. Phys. Chem. Chem. Phys. 2009, 11, 4949.
(11) (a) Venkataraman, L.; Klare, J. E.; Tam, I. W.; Nuckolls, C.;
Hybertsen, M. S.; Steigerwald, M. L. Nano Lett. 2006, 6, 458. (b) Quinn,
J. R.; Foss, F. W., Jr.; Venkataraman, L.; Hybertsen, M. S.; Breslow, R.
J. Am. Chem. Soc. 2007, 129, 6714. (c) Venkataraman, L.; Park, Y. S.;
Whalley, A. C.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nano
Lett. 2007, 7, 502.
(12) (a) Xu, B.; Xiao, X.; Tao, N. J. J. Am. Chem. Soc. 2003, 125,
16164. (b) Li, X.; Hihath, J.; Chen, F.; Masuda, T.; Zang, L.; Tao, N.
J. Am. Chem. Soc. 2007, 129, 11535. (c) Li, C.; Mishchenko, A.; Li, Z.;
Pobelov, I.; Wandlowski, T.; Li, X. Q.; W€urthner, F.; Bagrets, A.; Evers,
F. J. Phys., Condens. Matter. 2008, 20, 374122. (d) Zhou, X.-S.; Chen,
Z.-B.; Liu, S.-H.; Jin, S.; Liu, L.; Zhang, H.-M.; Xie, Z.-X.; Jiang, Y.-B.;
Mao, B.-W. J. Phys. Chem. C 2008, 112, 3935. (e) Horiguchi, K.;
Kurokawa, S.; Sakai, A. J. Chem. Phys. 2009, 131, 104703. (f) Wang,
C.; Batsanov, A. S.; Bryce, M. R.; Martin, S.; Nichols, R. J.; Higgins, S. J.;
Garcia-Suꢀarez, V. M.; Lambert, C. J. J. Am. Chem. Soc. 2009, 131, 15647.
’ ASSOCIATED CONTENT
Supporting Information. 1H NMR spectra of 3Py-TIPS,
S
b
3PY-Ph4T, 1Py-Ph4T, and 3Py-PE-3Py as well as the cyclic
3021
dx.doi.org/10.1021/ja109577f |J. Am. Chem. Soc. 2011, 133, 3014–3022