1258
M. Terada, K. Kanomata
CLUSTER
T.; Torii, S.; Ishihara, K. Adv. Synth. Catal. 2008, 350,
1776. (b) Shen, K.; Liu, X.; Cai, Y.; Lin, L.; Feng, X. Chem.
Eur. J. 2009, 15, 6008.
However, the metal-free acid displayed significantly higher
catalytic activity than the salt-containing acid, see:
(a) Klussmann, M.; Ratjen, L.; Hoffmann, S.; Wakchaure,
V.; Goddard, R.; List, B. Synlett 2010, 2189. Also see:
(b) Lu, G.; Birman, V. B. Org. Lett. 2011, 13, 356.
(14) List and co-workers reported that silica gel purified chiral
phosphoric acid 1a contained substantial amounts of alkali
and alkaline-earth metals along with several metal
impurities as ascertained by ICP-OES elemental analysis.
See ref. 10a.
(11) Selected examples of binaphthol-derived monophosphoric
acids as the chiral ligand for enantioselective catalysis. For
palladium catalysts, see: (a) Alper, H.; Hamel, N. J. Am.
Chem. Soc. 1990, 112, 2803. For rhodium catalysts, see:
(b) McCarthy, N.; McKervey, M. A.; Ye, T.; McCann, M.;
Murphy, E.; Doyle, M. P. Tetrahedron Lett. 1992, 33, 5983.
(c) Pirrung, M. C.; Zhang, J. Tetrahedron Lett. 1992, 33,
5987. For gold catalysts, see: (d) Hamilton, G. L.; Kang,
E. J.; Mba, M.; Toste, F. D. Science 2007, 317, 496.
(e) LaLonde, R. L.; Wang, Z. J.; Mba, M.; Lackner, A. D.;
Toste, F. D. Angew. Chem. Int. Ed. 2010, 49, 598. For
copper catalysts, see: (f) Zhao, B.; Du, H.; Shi, Y. J. Org.
Chem. 2009, 74, 8392. For silver catalysts, see: (g) Zhang,
Q.-W.; Fan, C.-A.; Zhang, H.-J.; Tu, Y.-Q.; Zhao, Y.-M.;
Gu, P.; Chen, Z.-M. Angew. Chem. Int. Ed. 2009, 48, 8572 .
For iron catalysts, see: (h) Yang, L.; Zhu, Q.; Guo, S.; Qian,
B.; Xia, C.; Huang, H. Chem. Eur. J. 2010, 16, 1638. For
rare-earth metal catalysts, see: (i) Inanaga, J.; Sugimoto, Y.;
Hanamoto, T. New J. Chem. 1995, 19, 707. (j) Furuno, H.;
Hanamoto, T.; Sugimoto, Y.; Inanaga, J. Org. Lett. 2000, 2,
49. (k) Sugihara, H.; Daikai, K.; Jin, X. L.; Furuno, H.;
Inanaga, J. Tetrahedron Lett. 2002, 43, 2735. (l) Jin, X. L.;
Sugihara, H.; Daikai, K.; Tateishi, H.; Jin, Y. Z.; Furuno, H.;
Inanaga, J. Tetrahedron 2002, 58, 8321. (m) Furuno, H.;
Kambara, T.; Tanaka, Y.; Hanamoto, T.; Kagawa, T.;
Inanaga, J. Tetrahedron Lett. 2003, 44, 6129. (n) Furuno,
H.; Hayano, T.; Kambara, T.; Sugimoto, Y.; Hanamoto, T.;
Tanaka, Y.; Jin, Y. Z.; Kagawa, T.; Inanaga, J. Tetrahedron
2003, 59, 10509. (o) Suzuki, S.; Furuno, H.; Yokoyama, Y.;
Inanaga, J. Tetrahedron: Asymmetry 2006, 17, 504. For
aluminum catalysts, see: (p) Yue, T.; Wang, M.-X.; Wang,
D.-X.; Masson, G.; Zhu, J. J. Org. Chem. 2009, 74, 8396.
For a combination of chiral phosphoric acid and magnesium
salt as a binary catalytic system, see: (q) Lv, J.; Li, X.;
Zhong, L.; Luo, S.; Cheng, J.-P. Org. Lett. 2010, 12, 1096.
(12) After the report by Ishihara and co-workers, the
enantioselective catalysis by chiral calcium phosphate was
developed by three research groups, see: (a) Drouet, F.;
Lalli, C.; Liu, H.; Masson, G.; Zhu, J. Org. Lett. 2011, 13,
94. (b) Zhang, Z.; Zheng, W.; Antilla, J. C. Angew. Chem.
Int. Ed. 2011, 50, 1135. (c) Rueping, M.; Bootwicha, T.;
Sugiono, E. Synlett 2011, 323. Also see chiral sodium
phosphate: (d) Hennecke, U.; Müller, C. H.; Fröhlich, R.
Org. Lett. 2011, 13, 860.
(15) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc.
2004, 126, 11804.
(16) Uraguchi, D.; Sorimachi, K.; Terada, M. J. Am. Chem. Soc.
2005, 127, 9360.
(17) Terada, M.; Machioka, K.; Sorimachi, K. Angew. Chem. Int.
Ed. 2006, 45, 2254.
(18) For the Preparation of Acid-Washed 1b (Method A)
Silica gel purified 1b was dissolved in Et2O. The resultant
solution was washed with HCl aq solution (2 M) in a
separatory funnel. The resultant ether layer was dried over
Na2SO4 and evaporated to remove organic solvents. The
resultant residue was dried under reduced pressure for more
than 12 h to eliminate organic solvents completely.
For the Preparation of Acid-Washed 1c (Method A)
Silica gel purified 1c was dissolved in MeOH. Then HCl aq
solution (2 M) was added to the resultant MeOH solution to
give a white suspension. The resultant suspension was
extracted with CH2Cl2 (twice or more), and the combined
organic layer was dried over Na2SO4. This was followed by
the procedure as shown in the preparation of acid-washed 1b
(method A).
(19) Extra pure silica gel (Silica gel 60 extra pure for column
chromatography: Catalogue No. 1.07754) was purchased
from Merck KgaA. Short-path column chromatography was
performed using CH2Cl2–MeOH (10:1) mixtures as eluent.
(20) For the enantioselective substitution reaction of a-diazo-
acetates with aldimines catalyzed by chiral Brønsted acids,
see: (a) Hashimoto, T.; Maruoka, K. J. Am. Chem. Soc.
2007, 129, 10054. (b) Hashimoto, T.; Maruoka, K. Synthesis
2008, 3703.
(21) For the enantioselective aziridine formation (aza-Darzens)
reaction of a-diazoacetates with aldimines catalyzed by
chiral Brønsted acids, see: (a) Hashimoto, T.; Uchiyama,
N.; Maruoka, K. J. Am. Chem. Soc. 2008, 130, 14380.
(b) Akiyama, T.; Suzuki, T.; Mori, K. Org. Lett. 2009, 11,
2445. (c) Zeng, X.; Zeng, X.; Xu, Z.; Lu, M.; Zhong, G. Org.
Lett. 2009, 11, 3036.
(22) A silica gel purified chiral phosphoric acid contains
considerable amounts of alkali and alkaline-earth metals
with other metal impurities. Therefore it should be
considered that a problem of reproducibility in yield and
selectivity would happen, because the composition of metals
is dependent on the conditions of silica gel column
chromatography conducted.
(13) In the reaction of trimethylsilyl cyanide, the formation of
hypervalent silicate might be responsible for the acceleration
of the reactions, see: (a) Hatano, M.; Ikeno, T.; Matsumura,
Synlett 2011, No. 9, 1255–1258 © Thieme Stuttgart · New York