September 2010
1209
(0.9 mg): 1H-NMR (CDCl3) d: 4.51 (1H, dd, Jϭ8.9 Hz, H-2), 5.04 (2H,
overlap, H-3, H-14), 4.90 (1H, br t, H-7), 5.10 (1H, br t, H-11), 2.40 (1H,
br d, H-13), 3.72 (1H, dd, Jϭ3.62, 9.74 Hz, H-17), 1.64 (3H, s, H-18), 1.57
(3H, s, H-19), 1.63 (3H, s, H-20). 2c (0.8 mg): 1H-NMR (CDCl3) d: 4.59
(1H, dd, Jϭ8.9 Hz, H-2), 5.07 (2H, overlap, H-3, H-11, H-14), 4.90 (1H,
br t, H-7), 5.10 (1H, br t, H-11), 2.28 (1H, br d, H-13), 3.75 (1H, dd, Jϭ3.62,
9.74 Hz, H-17), 1.64 (3H, s, H-18), 1.57 (3H, s, H-19), 1.61 (3H, s, H-20).
Preparation of Secondary Alcohol Derivative (5a), and (R)- , (S)-
MTPA Esters (5b, 5c) from 5 Secondary alcohol derivative (5a), and
(R)- , (S)-MTPA esters (5b, 5c) were prepared as described for 1 using 5
(22.7 mg, 63.0 mmol). 5a (11.1 mg): 1H-NMR (CDCl3) d: 2.98 (1H, m, H-1),
5.36 (1H, dd, Jϭ7.8, 10.8 Hz, H-2), 5.09 (overlap, H-3), 2.19 (overlap, H-5),
2.04 (1H, br d, Jϭ15.9 Hz, H-6), 4.71 (1H, br d, Jϭ8.7 Hz, H-7), 1.81 (1H,
m, H-9), 2.19 (overlap, H-9Ј), 1.96 (1H, m, H-10), 2.19 (overlap, H-10Ј),
5.06 (overlap, H-11), 3.74 (1H, d, Jϭ10.5 Hz, H-13), 1.52 (overlap, H-14),
1.90 (1H, m, H-14Ј), 2.47 (1H, dt, Jϭ4.2, 12.4 Hz, H-15), 3.60 (2H, d, Jϭ
4.2 Hz, H-17), 1.66 (3H, s, H-18), 1.57 (3H, s, H-19), 1.58 (3H, s, H-20),
3.36 (3H, s, OMe-17). 13C-NMR (CDCl3) d: 38.7 (CH, C-1), 77.5 (CH, C-
2), 119.4 (CH, C-3), 143.2 (qC, C-4), 39.6 (CH2, C-5), 24.4 (CH2, C-6),
125.4 (CH, C-7), 133.3 (qC, C-8), 39.7 (CH2, C-9), 22.9 (CH2, C-10), 126.5
(CH, C-11), 136.9 (qC, C-12), 76.9 (CH, C-13), 35.8 (CH2, C-14), 44.7
(CH, C-15), 176.6 (qC, C-16), 69.7 (CH2, C-17), 15.0 (CH3, C-18), 9.6
(CH3, C-19), 15.1 (CH3, C-20). 5b (1.1 mg): 1H-NMR (CDCl3) d: 5.45 (1H,
dd, Jϭ7.7, 10.8 Hz, H-2), 5.08 (1H, d, Jϭ10.8 Hz, H-3), 4.71 (1H, br d, Jϭ
8.7 Hz, H-7), 5.28 (1H, br, H-11), 5.16 (1H, d, Jϭ11.1 Hz, H-13), 3.60 (2H,
d, Jϭ4.0 Hz, H-17), 1.76 (3H, s, H-18), 1.58 (3H, s, H-19), 1.38 (3H, s, H-
References
1) Weinheimer A. J., Chang C. W. J., Matson J. A., “Progress in the
Chemistry of Organic Natural Products,” Vol. XXXVI, ed. by Herz W.,
Grisebach H., Kirby G. W., Springer-Verlag, Wien-New York, 1979.
2) Tursch B., Braekman J. C., Daloze D., Kaisin M., “Marine Natural
Products: Chemical and Biological Perspectives,” Vol. II, Chap. 4, ed.
by Scheuer J. P., Academic Press, New York-San Francisco-London,
1978, pp. 247—291.
3) Néeman I., Fishelson L., Kashman Y., Toxicon, 12, 593—598 (1974).
4) Yamauchi O., Omori M., Ninomiya M., Okuno M., Moriwaki H., Su-
ganuma M., Fujiki H., Yasutoshi Y., Jpn. J. Cancer Res., 51, 1234—
1238 (1991).
5) Li G., Zhang Y., Deng Z., Ofwegen L. V., Proksch P., Lin W., J. Nat.
Prod., 68, 649—652 (2005).
6) Radhika P., Rajeswara Rao P., Archana J., Koteswara Rao N., Biol.
Pharm. Bull., 28, 1311—1313 (2005).
7) Chao C.-H., Wen A.-H., Yang-Chang Wu Y.-C., Yeh H.-C., Sheu J.-H.,
J. Nat. Prod., 71, 1819—1824 (2008).
8) Rashid M. A., Gustafson K. R., Boyd M. R., J. Nat. Prod., 63, 531—
533 (2000).
9) Badria F. A., Guirguis A. N., Perovic S., Steffen R., Müller W. E. G.,
Schröder H. C., Toxicology, 131, 133—143 (1998).
10) Ohtani I., Kusumi T., Kashman Y., Kakisawa H., J. Am. Chem. Soc.,
113, 4092—4096 (1991).
11) Uchio Y., Eguchi S., Nakayama M., Hase T., “Abstracts of Papers,
27th Symposium on the Chemistry of Terpenes, Essentials Oils and
Aromatics,” Kanazawa, Japan, 1984, p. 59.
12) Kobayashi M., Ishizaka T., Miura N., Mitsuhashi H., Chem. Pharm.
Bull., 35, 2314—2318 (1987).
13) Coll J. C., Mitchell S. J., Stokie G. J., Aust. J. Chem., 30, 1859—1863
(1977).
14) Uchio Y., Eguchi S., Nakayama M., Hase T., Chem. Lett., 11, 277—
278 (1982).
15) Bowden B. F., Coll J. C., Heterocycles, 28, 669—672 (1989).
16) Beecham A. F., Tetrahedron Lett., 32, 3591—3594 (1968).
17) Forzato C., Nitti P., Pitacco G., Tetrahedron Assymetry, 8, 4101—4110
(1997).
1
20), 3.38 (3H, s, OMe-17). 5c (2.0 mg): H-NMR (CDCl3) d: 5.41 (1H, dd,
Jϭ6.9, 10.8 Hz, H-2), 5.07 (1H, d, Jϭ10.8 Hz, H-3), 4.71 (1H, br d, Jϭ
8.2 Hz, H-7), 5.32 (1H, br, H-11), 5.21 (1H, d, Jϭ11.3 Hz, H-13), 3.55 (1H,
dd, Jϭ2.9, 9.7 Hz, H-17), 3.38 (1H, br dd, Jϭ4.9 Hz, 9.5 Hz, H-17), 1.77
(3H, s, H-18), 1.59 (3H, s, H-19), 1.57 (3H, s, H-20), 3.20 (3H, s, OMe-17).
Cell Culture The RAW 264.7 macrophage cell line was purchased from
HSRRB. RAW 264.7 macrophages were grown in Dulbecco’s modification
of Eagle’s Medium (DMEM) medium (IWAKI) containing 10% fetal bovine
serum (FBS) (IWAKI), 2% of penicillin–streptomycin (GibcoBRL, U.S.A.),
1% of NEAA (GibcoBRL, U.S.A.) and kept in an incubator at 37 °C in a hu-
midified air containing 5% CO2 for 24 h.
18) Moiseeva G. P., Yusupova I. M., Abduazimov B. Kh., Sidyakin G. P.,
Chemistry of Natural Compounds, 22, 163—166 (1986).
19) Takaki H., Koganemaru R., Iwakawa Y., Higuchi R., Miyamoto T.,
Biol. Pharm. Bull., 26, 380—382 (2003).
Inhibition of LPS-Induced NO Production Briefly, macrophages were
plated (96-well plate) at a density of 1ϫ106 cells/ml (200 ml). After pre-incu-
bation for 24 h, cells were stimulated with LPS (1 mg/ml) for 3 h and fol-
lowed by further incubation with, or without, the addition of cembranoids
1—3 and 5—12 at various concentrations for 21 h. The method is related on
the measurement of the nitrite accumulated in culture medium as an indica-
tor of NO production based on the Griess reaction. In brief, 100 ml of cell
culture medium was mixed with 100 ml of Griess reagent [equal volumes of
1% (w/v) sulfanilamide in 5% (v/v) phosphoric acid and 0.1% (w/v)
naphtylethylenediamine–HCl). Incubated at r.t. for 10 min, then the ab-
sorbance was measured at 540 nm using microplate reader (Multiskan FC).
Fresh culture medium was used as the blank in all experiments. NG-
monomethyl-L-arginine monoacetate (L-NMMA, Wako), NOS inhibitor, was
used for the positive control.
Cell Viability Cell viability was assessed using Cell Titer 96 AQ (MTS
assay, Promega) according to the manufactureís protocol. In brief, 10 ml of
3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfo-
phenyl)-2H-tetrazolium, innersalt (MTS) was added to the 100 ml of cell cul-
ture medium after the measurement of the nitrate, and incubated for 2 h at
37 °C. The relative amount of formazan was measured by the absorbance at
492 nm using microplate reader. The cells treated with LPS were used as
control.
20) Miyamoto T., PCT, JP2009-063750 (2009).
21) Yamada Y., Suzuki S., Iguchi K., Hosaka K., Kikuchi H., Tsukitani Y.,
Horiai H., Shibayama F., Chem. Pharm. Bull., 27, 2394—2397 (1979).
22) Uchio Y., Eguchi S., Kuramoto J., Nakayama M., Hase T., Tetrahedron
Lett., 26, 4487—4490 (1985).
23) Bowden B. F., Coll J. C., Mitchell S. J., Stokie G. J., Aust. J. Chem., 31,
1303—1312 (1978).
24) Yamada Y., Suzuki S., Iguchi K., Kikuchi H., Tsukitani Y., Horiai H.,
Chem. Pharm. Bull., 28, 2035—2038 (1980).
25) Vanderah D. J., Rutledge N., Schmitz F. J., Ciereszko L. S., J. Org.
Chem., 43, 1614—1616 (1978).
26) Kobayashi M., Hamaguchi T., Chem. Pharm. Bull., 36, 3780—3786
(1988).
27) Aoki M., Kato T., Uchio Y., Nakayama M., Kodama M., Bull. Chem.
Soc. Jpn., 58, 779—780 (1985).
28) Huang H.-C., Ahmed A. F., Su J.-H., Chao C.-H., Wu Y.-C., Chiang
M.-Y., Sheu J.-H., J. Nat. Prod., 69, 1554—1559 (2006).
Acknowledgment We wish to thank the Ministry of Education, Culture,
Sports, Science and Technology (MEXT) of Japan for the financial support
to Mr. Mpanzu Wanzola.