Organic Letters
Letter
The Ag(I)/S2O82−-promoted decarboxylation of an unprotected
amino acid is expected to form 1-aminoalkyl radical species
43.9,13b Under the strongly oxidizing reaction conditions,18 we
believe that 43 is rapidly converted to the corresponding
iminium species 44 and hydrolyzed to aldehyde 45.13b Formyl
hydrogen−atom abstraction via persuflate radical anion gen-
erates acyl radical 46 which undergoes radical decarbonylation to
liberate the α-amino acid side-chain as nucleophilic alkyl radical
47. In the case of 1° substituted amino acids, 46 may be trapped
directly by a heterocyclic substrate to form the observed acyl
products. Addition of 47 into a protonated heterocycle followed
by hydrogen atom abstraction and rearomatization provides the
expected alkylated product 48.19
In summary, we have developed a method that utilizes
unprotected amino acids as bench-stable sources of alkyl radicals
for the C−H functionalization of heterocycles. A variety of
electron-deficient heterocycles are functionalized in good yield
and high levels of selectivity. Preliminary mechanistic studies
suggest the in situ formation of an aldehyde intermediate which
undergoes a Minisci-type radical substitution reaction via a
decarbonylative process. This multistep generation of reactive
intermediates displays reactivity differing from using either an
aldehyde or carboxylic acid directly as an alkyl-radical precursor.
A comprehensive mechanistic study is ongoing and will provide
insight into extending the chemistry to other amino acids.
(4) For a review on direct radical additions to pharmaceutically
relevant molecules, see: Duncton, M. A. J. MedChemComm 2011, 2,
1135−1161.
(5) (a) For seminal contribution, see: Minisci, F.; Bernardi, R.; Bertini,
F.; Galli, R.; Perchinummo, M. Tetrahedron 1971, 27, 3575−3579.
(b) Minisci, F. Synthesis 1973, 1973, 1−24. (c) Minisci, F.; Vismara, E.;
Fontana, F. Heterocycles 1989, 28, 489−519. (d) Minisci, F.; Fontana, F.;
Vismara, E. J. Heterocycl. Chem. 1990, 27, 79−96.
(6) For boronic acids as radical precursors, see: (a) Seiple, I. B.; Su, S.;
Rodriguez, R. A.; Gianatassio, R.; Fujiwara, Y.; Sobel, A. L.; Baran, P. S. J.
Am. Chem. Soc. 2010, 132, 13194−13196. For metal sulfinates as radical
precursors, see: (b) Langlois, B. R.; Laurent, E.; Roidot, N. Tetrahedron
Lett. 1991, 32, 7525−7528. (c) Ji, Y.; Bruckl, T.; Baxter, R. D.; Fujiwara,
̈
Y.; Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. Proc. Natl. Acad.
Sci. U. S. A. 2011, 108, 14411−14415. (d) Fujiwara, Y.; Dixon, J. A.;
Rodriguez, R. A.; Baxter, R. D.; Dixon, D. D.; Collins, M. R.; Blackmond,
D. G.; Baran, P. S. J. Am. Chem. Soc. 2012, 134, 1494−1497. (e) Fujiwara,
Y.; Dixon, J. A.; O’Hara, F.; Funder, E. D.; Dixon, D. D.; Rodriguez, R.
A.; Baxter, R. D.; Herle, B.; Sach, N.; Collins, M. R.; Ishihara, Y.; Baran,
P. S. Nature 2012, 492, 95−99.
(7) Cost comparison based on isopropyl radical sources available from
the Aldrich online catalogue: isobutyric acid (cat. no. 58360; $0.31/
gram), isopropylboronic acid (cat. no. 648787; $36.00/gram), zinc
isopropylsulfinate (cat. no. 745480; $51.90/gram). L-valine (cat. no.
V0500; $0.41/gram).
(8) For a recent review on peptide couplings, see: El-Faham, A.;
Albericio, F. Chem. Rev. 2011, 111, 6557−6602.
(9) Cowden, C. J. Org. Lett. 2003, 5, 4497−4499.
(10) (a) Zuo, Z.; MacMillan, D. W. C. J. Am. Chem. Soc. 2014, 136,
5257−5260. (b) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; Doyle,
A. G.; MacMillan, D. W. C. Science 2014, 345, 437−440. (c) Zuo, Z.;
Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C. J. Am. Chem.
Soc. 2016, 138, 1832−1835.
(11) For an example of a slow-release radical strategy utilizing
electrochemical initiation, see: O’Brien, A. G.; Maruyama, A.; Inokuma,
Y.; Fujita, M.; Baran, P. S.; Blackmond, D. G. Angew. Chem., Int. Ed.
2014, 53, 11868−11871.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
Experimental procedures and spectroscopic data for new
(12) (a) Liu, X.; Wang, Z.; Cheng, X.; Li, C. J. Am. Chem. Soc. 2012,
134, 14330−14333. (b) Wang, Z.; Zhu, L.; Yin, F.; Su, Z.; Li, Z.; Li, C. J.
Am. Chem. Soc. 2012, 134, 4258−4236. (c) Yin, F.; Wang, Z.; Li, Z.; Li,
C. J. Am. Chem. Soc. 2012, 134, 10401−10404. (d) Li, Z.; Song, L.; Li, C.
J. Am. Chem. Soc. 2013, 135, 4640−4643. (e) Li, Z.; Wang, Z.; Zhu, L.;
Tan, X.; Li, C. J. Am. Chem. Soc. 2014, 136, 16439−16443. (f) Liu, C.;
Wang, X.; Li, Z.; Cui, L.; Li, C. J. Am. Chem. Soc. 2015, 137, 9820−9823.
(g) Cui, L.; Chen, H.; Liu, C.; Li, C. Org. Lett. 2016, 18, 2188−2191.
(13) (a) Schonberg, A.; Moubacher, R. Chem. Rev. 1952, 50, 261−277.
(b) Zelechonok, Y.; Silverman, R. B. J. Org. Chem. 1992, 57, 5787−5790.
(c) Rizzi, G. P. Food Rev. Int. 2008, 24, 416−435. (d) Nashalian, O.;
Yaylayan, V. A. J. Agric. Food Chem. 2014, 62, 8518−8523.
(14) For radical-based alkylations from aldehydes, see: (a) Paul, S.;
Guin, J. Chem. - Eur. J. 2015, 21, 17618−17622. (b) Tang, R. J.; Kang, L.;
Yang, L. Adv. Synth. Catal. 2015, 357, 2055−2060. For radical-based
acylations from aldehydes, see: (c) Matcha, K.; Antonchick, A. P. Angew.
Chem., Int. Ed. 2013, 52, 2082−2086. (d) Siddaraju, Y.; Lamani, M.;
Prabhu, K. R. J. Org. Chem. 2014, 79, 3856−3865. (e) Cheng, P.; Qing,
Z.; Liu, S.; Liu, W.; Xie, H.; Zeng, J. Tetrahedron Lett. 2014, 55, 6647−
6651. (f) Chen, J. Y.; Wan, M.; Hua, J.; Sun, Y.; Lv, Z.; Li, W.; Liu, L. Org.
Biomol. Chem. 2015, 13, 11561−11566. For a review on the chemistry of
acyl radicals, see: (g) Chatgilialoglu, C.; Crich, D.; Komatsu, M.; Ryu, I.
Chem. Rev. 1999, 99, 1991−2070.
AUTHOR INFORMATION
■
Corresponding Author
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
For assistance with high-resolution mass data we thank Professor
Brandon White, the National Science Foundation (MRI Grant
́
No. 0923573), and San Jose State University for use of mass
spectrometry facilities in the PROTEIN LAB. We gratefully
acknowledge the University of California, Merced, for financial
support.
REFERENCES
■
(1) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ.
2010, 87, 1348−1349.
(2) (a) Alberico, D.; Scott, M. E.; Lautens, M. Chem. Rev. 2007, 107,
174−238. and references therein (b) Berman, A. M.; Lewis, J. C.;
Bergman, R. G.; Ellman, J. A. J. Am. Chem. Soc. 2008, 130, 14926−
14927. (c) Li, M.; Hua, R. Tetrahedron Lett. 2009, 50, 1478−1481.
(d) Do, H.-Q.; Khan, R. M. K.; Daugulis, O. J. Am. Chem. Soc. 2008, 130,
15185−15192.
(15) Minisci, F.; Vismara, E.; Morini, G.; Fontana, F.; Levi, S.;
Serravalle, M.; Giordano, C. J. Org. Chem. 1986, 51, 476−479.
(17) Lennox, A. J. J.; Lloyd-Jones, G. C. J. Am. Chem. Soc. 2012, 134,
7431−7441.
(3) For a recent review on innate C−H functionalization reactions, see:
Bruckl, T.; Baxter, R. D.; Ishihara, Y.; Baran, P. S. Acc. Chem. Res. 2012,
45, 826−839. (b) Kuhl, N.; Hopkinson, M. N.; Wencel-Delord, J.;
Glorius, F. Angew. Chem., Int. Ed. 2012, 51, 10236−10254; Angew. Chem.
2012, 124, 10382−10401.
(18) Minisci, F.; Citterio, A.; Giordano, C. Acc. Chem. Res. 1983, 16,
27−32.
̈
(19) Our current studies cannot rule out radical decyanation from an
iminium intermediate to provide alkyl radicals.
D
Org. Lett. XXXX, XXX, XXX−XXX