4890
S. J. Park et al. / Bioorg. Med. Chem. Lett. 21 (2011) 4888–4890
16. (a) Swigert, J.; Taylor, K. G. J. Am. Chem. Soc. 1971, 93, 7338; (b) Johnson, C. R.;
Supplementary data
Schroeck, C. W.; Schanklin, J. R. J. Am. Chem. Soc. 1973, 95, 7424; (c) Shiner, C. S.;
Berks, A. H. J. Org. Chem. 1988, 53, 5542.
17. Selected data for product characterization: 6: mp 140.0–140.9 °C; 1H NMR
(300 MHz, CDCl3) d 8.16 (t, 1H, J = 2.0 Hz, Ph), 8.13 (t, 1H, J = 1.9 Hz, Ph), 7.90 (t,
1H, J = 2.0 Hz, Ph), 7.87 (t, 1H, J = 2.0 Hz, Ph), 3.05 (s, 3H, -Ph-S(NCN)-CH3), 2.65
(s, 3H, CH3–CO–Ph–); 13C NMR (75 MHz, CDCl3) d 196.4 (CO), 140.7 (C), 140.4
(C), 129.9 (2 ꢀ CH), 126.1 (2 ꢀ CH), 119.9 (CN), 36.7 (CH3), 26,8 (CH3); IR (KBr)
Supplementary data associated with this article can be found, in
References and notes
m
2148, 1678, 1178, 978 cmꢁ1. 7: 1H NMR (300 MHz, CDCl3) d 8.17 (t, 1H,
J = 2.0 Hz, Ph), 8.14 (t, J = 1.9 Hz, Ph), 8.06 (t, 1H, J = 2.0 Hz, Ph), 8.03 (J = 1.9 Hz,
Ph), 3.32 (s, 3H, –Ph–S(O)(NCN)–CH3), 2.63 (s, 3H, CH3–CO–Ph–); 13C NMR
(75 MHz, CDCl3) d 196.1 (CO), 142.2 (C), 139.8 (C), 129.8 (2 ꢀ CH), 128.4
1. Marnett, L. J. Annu. Rev. Pharmacol. Toxicol. 2009, 49, 265.
2. (a) Ray, W. A.; Stein, C. M.; Daugherty, J. R.; Hall, K.; Arbogast, P. G.; Griffin, M.
R. Lancet 2002, 360, 1071; (b) Zhang, J.; Ding, E. L.; Song, Y. JAMA 2006, 296,
1619; (c) McGettigan, P.; Henry, D. JAMA 2006, 296, 1633.
(2 ꢀ CH), 44.5 (CH3), 27.0 (CH3); IR (KBr)
m .
2192, 1687, 1398, 1192, 973 cm–1
8: mp 99.2–99.9 °C; 1H NMR (300 MHz, CDCl3) d 8.21 (t, 1H, J = 2.0 Hz, Ph), 8.18
(t, J = 1.9 Hz, Ph), 8.09 (t, 1H, J = 2.0 Hz, Ph), 8.06 (J = 2.0 Hz, Ph), 4.40 (s, 2H, Br–
CH2–CO–Ph–), 3.33 (s, 3H, –Ph–S(O)(NCN)–CH3); 13C NMR (75 MHz, CDCl3) d
189.8 (CO), 140.5 (C), 139.2 (C), 130.6 (2 ꢀ CH), 128.6 (2 ꢀ CH), 44.5 (CH3), 30.0
3. (a) Solomon, S. D.; McMurray, J. J. V.; Pfeffer, M. A.; Wittes, J.; Fowler, R.; Finn,
P.; Anderson, W. F.; Zauber, A.; Hawk, E.; Bertagnolli, M. N. Eng. J. Med. 2005,
352, 1071; (b) Andersohn, F.; Schade, R.; Suissa, S.; Garbe, E. Stroke 2006, 37,
1725; (c) Bertagnolli, M. M.; Eagle, C. J.; Zauber, A. G.; Redston, M.; Solomon, S.
D.; Kim, K.; Tang, J.; Rosenstein, R. B.; Wittes, J.; Corle, D.; Hess, T. M.; Woloj, G.
M.; Boisserie, F.; Anderson, W. F.; Viner, J. L.; Bagheri, D.; Burn, J.; Chung, D. C.;
Dewar, T.; Foley, T. R.; Hoffman, N.; Macrae, F.; Pruitt, R. E.; Saltzman, J. R.;
Salzberg, B.; Sylwestrowicz, T.; Gordon, G. B.; Hawk, E. T. N. Eng. J. Med. 2006,
355, 873; (d) Kearney, P. M.; Baigent, C.; Godwin, J.; Halls, H.; Emberson, J. R.;
Patrono, C. Br. Med. J. 2006, 332, 1302; (e) Solomon, D. H.; Avorn, J.; Stürmer, T.;
Glynn, R. J.; Mogun, H.; Schneeweiss, S. Arthritis Rheum. 2006, 54, 1378.
4. (a) Bentley, H. R.; McDermott, E. E.; Pace, J.; Whitehead, J. K.; Moran, T. Nature
1949, 163, 675; (b) Bentley, H. R.; McDermott, E. E.; Pace, J.; Whitehead, J. K.;
Moran, T. Nature 1950, 165, 150; (c) Bentley, H. R.; McDermott; Whitehead, J. K.
Nature 1950, 165, 735.
5. (a) Johnson, C. R. Acc. Chem. Res. 1973, 6, 341; (b) Reggelin, M.; Zur, C. Synthesis
2000, 1; (c) Bentley, R. Chem. Soc. Rev. 2005, 34, 609; (d) Worch, C.; Mayer, A. C.;
Bolm, C. In Organosulfur Chemistry in Asymmetric Synthesis; Toru, T., Bolm, C.,
Eds.; Wiley/VCH: Weinheim, 2008; p 209.
6. (a) Harmata, M. Chemtracts 2003, 16, 660; (b) Okamura, H.; Bolm, C. Chem. Lett.
2004, 33, 482; (c) Bolm, C. In Asymmetric Synthesis with Chemical and Biological
Methods; Enders, D., Jaeger, K.-E., Eds.; Wiley/VCH: Weinheim, 2007; p 149.
7. For a recent example, where buthionine sulfoximine (BSO) was applied as
inhibitor for the glutathione biosynthesis, see: (a) Takahashi, K.; Tatsunami, R.;
Oba, T.; Tampo, Y. Biol. Pharm. Bull. 2010, 33, 556; For the initial demonstration,
(CH2); IR (KBr)
m
2188, 1690, 1396, 1192, 980 cmꢁ1. 9: 1H NMR (400 MHz,
CDCl3) d 7.90 (d, 2H, J = 8.6 Hz, Ph), 7.54 (d, 2H, J = 8.6 Hz, Ph), 7.37–7.31 (m,
5H, Ph), 5.14 (s, 2H, –CO–O–CH2–C–Ph–), 3.28 (s, 3H, CH3–S(O)(NH)–Ph–); 13C
NMR (100 MHz, CDCl3) d 172.2 (CO), 152.4 (C), 138.0 (C), 137.4 (C), 130.0 (C),
129.8 (CH), 129.7 (CH), 129.2 (2 ꢀ CH), 129.1 (4 ꢀ CH), 128.9 (C), 128.6
(2 ꢀ CH), 70.2 (CH2), 44.6 (CH3); IR (KBr)
m H
2197, 1748, 1196, 964 cmꢁ1. 2a: 1
NMR (400 MHz, CDCl3) d 7.93 (d, 2H, J = 8.5 Hz, Ph), 7.44 (d, 2H, J = 8.5 Hz, Ph),
7.33 (s, 5H, Ph), 5.13 (s, 2H, –CO–O–CH2–C–Ph–), 3.10 (s, 3H, CH3–S(O)(NH)–
Ph–), 2.88 (br, 1H, CH3–S(O)(NH)–Ph–); 13C NMR (100 MHz, CDCl3) d 172.5
(CO), 153.5 (C), 144.3 (C), 135.8 (C), 129.4 (CH), 129.2 (C), 129.1 (2 ꢀ CH), 128.9
(2 ꢀ CH), 128.8 (C), 128.4 (4 ꢀ CH), 70.4 (CH2), 45.9 (CH3); IR (KBr)
m 3344,
1747, 1116, 958 cmꢁ1; MS (EI), m/z (relative intensity) 313 [M+, 21], 250 [M+-
S(O)(NH)CH3, 100], 192 [66], 178 [61], 165 [43], 152 [23]; HRMS (EI), m/z: Anal.
Calcd for C17H16O3NS 314.0845. Found: 314.0845. 2b: 1H NMR (400 MHz,
CDCl3) d 7.82 (d, 2H, J = 8.5 Hz, Ph), 7.45 (d, 2H, J = 8.8 Hz, Ph), 7.35 (s, 5H, Ph),
5.14 (s, 2H, –CO–O–CH2–C–Ph–), 3.05 (s, 3H, CH3–S(O)(NH)–Ph–), 2.59 (s, 3H,
CH3–S(O)(NCH3)–Ph–); 13C NMR (100 MHz, CDCl3) d 172.5 (CO), 153.5 (C),
140.5 (C), 135.4 (C), 129.4 (CH), 129.4 (2 ꢀ CH), 129.3 (C), 129.1 (2 ꢀ CH), 128.9
(2 ꢀ CH), 128.8 (C), 128.5 (2 ꢀ CH), 70.4 (CH2), 44.7 (CH3), 29.5 (CH3); HRMS
(EI), m/z: Anal. Calcd for C18H18O3NS 328.1002. Found: 328.1002.
18. The biochemical assays for the COX-1/2 inhibitions were performed by Ricerca
Biosciences, Chicago, USA. In the analysis of sulfoximine 2a (at 10
concentration) concurrently tested samples of indomethacin (for COX-1) and
VioxxÒ (for COX-2) showed IC50 values of 0.0338 and 0.156
M, respectively. In
the studies of 2b those IC50 values were 0.0424 and 0.156 M, respectively.
lM
that BSO blocks the GSH synthesis by inhibiting the
synthetase, see: (b) Meister, A. Science 1983, 220, 472.
c-glutamylcysteine
l
8. For a recent example of the patent literature related to agrochemicals, see:
Paulini, R.; Breuninger, D.; vonDeyn, W.; Bastiaans, H. M. M.; Beyer, C.;
Anspaugh, D. D.; Oloumi-Sadeghi, H. WO 156336 A1, 2009 (BASF AG).
9. For a recent example of the patent literature related to medicinal chemistry,
see: von Nussbaum, F.; Karthaus, D.; Anlauf, S.; Delbeck, M.; Li, V. M.-J.;
Meibom, D.; Lustig, K.; Schneider, D. WO 115548 A1, 2010 (Bayer Schering
Pharma AG).
10. (a) Kahraman, M.; Sinishtaj, S.; Dolan, P. M.; Kensler, T. W.; Peleg, S.; Saha, U.;
Chuang, S. S.; Bernstein, G.; Korczak, B.; Posner, G. H. J. Med. Chem. 2004, 47,
6854; (b) Raza, A.; Sham, Y. Y.; Vince, R. Bioorg. Med. Chem. Lett. 2008, 18, 5406;
(c) Lücking U.; Siemeister, G.; Jautelat, R. WO 099974 A1, 2006 (Schering AG).
11. Walker, D. P.; Zawistoski, M. P.; McGlynn, M. A.; Li, J.-C.; Kung, D. W.; Bonnette,
P. C.; Baumann, A.; Buckbinder, L.; Houser, J. A.; Boer, J.; Mistry, A.; Han, S.;
Xing, L.; Guzman-Perez, A. Bioorg. Med. Chem. Lett. 2009, 19, 3253.
12. For the relationship between hERG inhibition and cardiovascular safety, see:
(a) Bresalier, R. S.; Sandler, R. S.; Quan, H.; Bolognese, J. A.; Oxenius, B.; Horgan,
K.; Lines, C.; Riddell, R.; Morton, D.; Lanas, A.; Konstam, M. A.; Baron, J. A. N.
Eng. J. Med. 2005, 352, 1092; Friderichs, E.; Christoph, T.; Buschmann, H. 2007.
Analgesics and Antipyretics. Ullmann’s Encyclopedia of Industrial Chemistry.
13. Thérien, M.; Gauthier, J. Y.; Leblanc, Y.; Léger, S.; Perrier, H.; Prasit, P.; Wang, Z.
Synthesis 2001, 1778.
l
Details are given in the Supplementary data. The following references were
relevant for those experiments: (a) Chan, C.-C.; Boyce, S.; Brideau, C.;
Charleson, S.; Cromlish, W.; Ethier, D.; Evans, J.; Ford-Hutchinson, A. W.;
Forrest, M. J.; Gauthier, J. Y.; Gordon, R.; Gresser, M.; Guay, J.; Kargman, S.;
Kennedy, B.; Leblanc, Y.; Leger, S.; Mamcini, J.; O’Neill, G. P.; Ouellet, M.;
Patrick, D.; Percival, M. D.; Perrier, H.; Prasit, P.; Rodger, I.; Tagari, P.; Therien,
M.; Vickers, P.; Visco, D.; Wang, Z.; Webb, J.; Wong, E.; Xu, L.-J.; Young, R. N.;
Zamboni, R.; Riendeau, D. J. Pharmacol. Exp. Ther. 1999, 290, 551; (b) Swinney,
D. C.; Mak, A. Y.; Barnett, J.; Ramesha, C. S. J. Biol. Chem. 1997, 272, 12393; (c)
Riendeau, D.; Charleson, S.; Cromlish, W.; Mancini, J. A.; Wong, E.; Guay, J. Can.
J. Physiol. Pharmacol. 1997, 75, 1088; (d) Warner, T. D.; Giuliano, F.; Vojnovic, I.;
Bukasa, A.; Mitchell, J. A.; Vane, J. R. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 7563.
19. The biochemical assays for the determinations of the hERG blocking potencies
were performed by Cytocentrics, Rostock, Germany. Quinidine served as
reference compound. Details are given in the Supplementary data. The
following references were relevant for those experiments: (a) Sanguinetti, M.
C.; Jiang, C.; Curran, M. E.; Keating, M. T. Cell 1995, 81, 299; (b) Witchel, H. J.
Expert Opin. Ther. Targets 2007, 11, 321; (c) Mohammad, S.; Zhou, Z.; Gong, Q.;
January, C. T. Am. J. Physiol. 1997, 273, 2534.
20. Here, only racemic sulfoximines have been investigated. Optically active
products should be accessible via the corresponding known sulfoxides. For
their preparation, see: Caturla, F.; Amat, M.; Reinoso, R. F.; Córdoba, M.;
Warrellow, G. Bioorg. Med. Chem. Lett. 2006, 16, 3209.
14. (a) Mancheño, O. G.; Bolm, C. Org. Lett. 2007, 9, 2951; (b) Mancheño, O. G.;
Bistri, O.; Bolm, C. Org. Lett. 2007, 9, 3809; (c) Pandey, A.; Bolm, C. Synthesis
2010, 2922.
15. Stoss, P.; Satzinger, G. Tetrahedron Lett. 1973, 4, 267.